This page is intended as a virtual library for the use of the condensed matter theory group and of students and researchers in related fields at the Technische Universität Dresden and elsewhere. The selection and the comments are entirely subjective and are based on Prof. Timm's interests and probably lack of understanding. Prof. Timm and the Technische Universität Dresden certainly do not endorse the content of any of the papers linked here. We would be delighted if anyone finds this page useful.

The collection is grouped into (a) pedagogical introductions, lecture notes etc., (b) review articles and dedicated journal issues, and (c) research papers. Each category is again divided by topic.

- C. K. Zachos,
*Deformation Quantization: Quantum Mechanics Lives and Works in Phase-Space*, hep-th/0110114, Int. J. Mod. Phys. A**17**, 297 (2002) (Groenewold-Moyal formulation of quantum mechanics based on Wigner-Weyl transform, includes historical bibliography) - D. Cohen,
*Lecture Notes in Quantum Mechanics*, quant-ph/0605180 (extensive, including a number of advanced topics, revised 2012)

- A. Auerbach,
*Quantum Magnetism Approaches to Strongly Correlated Electrons*, cond-mat/9801294 (renormalization group approach to the Hubbard model, spin path integrals, various useful mappings) - D. Belitz, and T. R. Kirkpatrick,
*Quantum phase transitions*, cond-mat/9811058, in*Dynamics: Models and Kinetic Methods for Non-Equilibrium Many Body Systems*, edited by J. Karkheck, (Kluwer, Dordrecht, 2000), p. 399 - J. Kroha and P. Wölfle,
*Fermi and Non-Fermi Liquid Behavior in Quantum Impurity Systems: Conserving Slave Boson Theory*, cond-mat/9811074, Acta Phys. Pol. B**29**, 3781 (1998) - A. M. J. Schakel,
*Quantum Phase Transitions in 2d Quantum Liquids*, cond-mat/9811393 (also discusses the functional integral method, superfluidity, superconductivity, Chern-Simons-Ginzburg-Landau theory) - C. P. Burgess,
*An Ode to Effective Lagrangians*, hep-ph/9812470 (explains why effective low-energy theories often work surprisingly well) - A. E. Ruckenstein,
*Bose Condensation Without Broken Symmetries*, cond-mat/0104010 - G. Sierra,
*Integrability and Conformal Symmetry in the BCS model*, hep-th/0111114 (relationships between Richardson's pairing model, integrable models, CFT, and Chern-Simons theory) - E. H. Lieb and F. Y. Wu,
*The one-dimensional Hubbard model: A reminiscence*, cond-mat/0207529, Physica A**321**, 1 (2003) (filling in the details of the well-known exact solution of 1968) - M. Paulsson,
*Non Equilibrium Green's Functions for Dummies: Introduction to the One Particle NEGF equations*, cond-mat/0210519 (short tutorial, aims to provide intuitive understanding, not Keldysh but single-particle resolvent; method is probably more general) - I. V. Lerner,
*Nonlinear Sigma Model for Normal and Superconducting Systems: A Pedestrian Approach*, cond-mat/0307471 - J. Richter, J. Schulenburg, and A. Honecker,
*Quantum magnetism in two dimensions: From semi-classical Neel order to magnetic disorder*, Lect. Notes Phys.**645**, 85 (2004); cond-mat/0412662 (Heisenberg antiferromagnet on the 11 Archimedean lattices)**!** - C. Di Castro and R. Raimondi,
*Disordered Electron Systems*, cond-mat/0402203 - M. Greiter,
*Is electromagnetic gauge invariance spontaneously violated in superconductors?*, cond-mat/0503400 - L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta,
*Competing Orders and non-Landau-Ginzburg-Wilson Criticality in (Bose) Mott transitions*, cond-mat/0504692 - F. D. M. Haldane,
*Luttinger's Theorem and Bosonization of the Fermi Surface*, cond-mat/0505529 (hard to find set of lectures on bosonization of the Fermi liquid, in particular in higher dimensions) - V. L. Libero and K. Capelle,
*Density-functional treatment of model Hamiltonians: basic concepts and application to the Heisenberg model*, cond-mat/0506206 - P. Bruno,
*Berry phase effects in magnetism*, cond-mat/0506270 - S. Forte,
*Spin in quantum field theory*, hep-th/0507291 (spin, statistics, path integrals) - F. Alet, A. M. Walczak, and M. P. A. Fisher,
*Exotic quantum phases and phase transitions in correlated matter*, cond-mat/0511516**!** - S. Andergassen, T. Enss, C. Karrasch, and V. Meden,
*A gentle introduction to the functional renormalization group: the Kondo effect in quantum dots*, cond-mat/0612229 - S. Eggert,
*One-dimensional quantum wires: A pedestrian approach to bosonization*, arXiv:0708.0003 (with detailed discussion of transport) - A. Stern,
*Anyons and the quantum Hall effect - a pedagogical review*, arXiv:0711.4697 - A. J. M. Schmets and W. Montfrooij,
*Teaching superfluidity at the introductory level*, arXiv:0804.3086 (...as part of introductory modern physics) - G. Misguich,
*Quantum spin liquids*, arXiv:0809.2257 - I. Affleck,
*Quantum Impurity Problems in Condensed Matter Physics*, arXiv:0809.3474 (emphasizing boundary conformal field theory) - A. Kamenev and A. Levchenko,
*Keldysh technique and nonlinear sigma-model: basic principles and applications*, arXiv:0901.3586 (extensive introduction into the Keldysh formalism for fermions and bosons, application to the non-linear sigma model for disordered systems) - B. J. Powell,
*An introduction to effective low-energy Hamiltonians in condensed matter physics and chemistry*, arXiv:0906.1640 - L. Palova, P. Chandra, and P. Coleman,
*The Casimir Effect from a Condensed Matter Perspective*, arXiv:0907.4976 - P. Coleman,
*Many Body Physics*, http://www.physics.rutgers.edu/~coleman/mbody.html (an evolving textbook) - D. Vollhardt,
*Dynamical Mean-Field Theory of Electronic Correlations in Models and Materials*, arXiv:1004.5069, AIP Conf. Proc.**1297**, 339 (2010) - T. Kita,
*Introduction to Nonequilibrium Statistical Mechanics with Quantum Field*, Prog. Theor. Phys.**123**, 581 (2010) (interacting fermionic and bosonic systems outside of equilibrium; pedagogical introduction with large scope: Keldysh formalism, Wigner-Moyal formulation of quantum theory, Phi-derivable approximation, the Boltzmann equation...) - V. Dotsenko,
*One more discussion of the replica trick: the examples of exact solutions*, arXiv:1010.3913 - S. Bravyi, D. DiVincenzo, and D. Loss,
*Schrieffer-Wolff transformation for quantum many-body systems*, arXiv:1105.0675 - N. Iqbal, H. Liu, and M. Mezei,
*Lectures on holographic non-Fermi liquids and quantum phase transitions*, arXiv:1110.3814 (gauge-gravity duality) - M. Potthoff,
*Static and dynamic variational principles for strongly correlated electron systems*, arXiv:1202.4907 - J. Bünemann,
*The Gutzwiller Density Functional Theory*, arXiv:1207.6456 - K. Schönhammer,
*Physics in one dimension: theoretical concepts for quantum many-body systems*, arXiv:1212.1632, J. Phys.: Condens. Matter**25**, 014001 (2013) (exact solutions, Luttinger liquid) - P. Fulde,
*Wavefunction-based electronic-structure calculations for solids*, Nature Phys.**12**, 106 (2016) (using cumulants and scattering theory)

- H. Eschrig,
*The Fundamentals of Density Functional Theory*, book for download, revised version (2003) - P. E. Blöchl,
*Theory and Practice of Density-Functional Theory*, arXiv:1108.1104 - C. A. Ullrich and Z.-H. Yang,
*A brief compendium of time-dependent density-functional theory*, arXiv:1305.1388

- R. Savit,
*Duality in field theory and statistical systems*, Rev. Mod. Phys.**52**, 453 (1980) - S. F. Gull,
*Some Misconceptions about Entropy*(1989) http://www.ucl.ac.uk/~ucejph/reality/entropy/text.html - J. P. Sethna,
*Order Parameters, Broken Symmetry, and Topology*, cond-mat/9204009 (updated 2009), 1991 Lectures in Complex Systems, edited by L. Nadel and D. Stein (Addison Wesley, 1992), p. 243 - J. Cardy,
*Renormalisation group approach to reaction-diffusion problems*, cond-mat/9607163 (short review, also discusses analogies of the master equation and the Schrödinger equation and the basics of the field-theoretical formulation) - Z. Gulácsi and M. Gulácsi,
*Theory of phase transitions in two-dimensional systems*, Adv. Phys.**47**, 1 (1998) - E. H. Lieb and J. Yngvason,
*A guide to entropy and the second law of thermodynamics*, cond-mat/9805005 - H. Hinrichsen,
*Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States*, Adv. Phys.**49**, 815 (2000), cond-mat/0001070 (long review, discusses many specific examples, with good figures) - K. Ghosh, K. Dill, M. M. Inamdar, E. Seitaridou, and R. Phillips,
*Teaching the Principles of Statistical Dynamics*, cond-mat/0507388 (derivation of various dynamical laws from a maximum principle, similar to maximization of entropy in statics) - C. Bustamante, J. Liphardt, and F. Ritort,
*The Nonequilibrium Thermodynamics of Small Systems*, cond-mat/0511629 (long version of Physics Today**58**, 43 (2005)) - W. Belzig,
*An introduction to Full Counting Statistics in Mesoscopic Electronics*, http://www.lancs.ac.uk/users/esqn/nano2006/talks/Belzig.pdf, Lancaster School on Counting Statistics, January 2006 - G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero,
*Density Matrix Renormalization Group for Dummies*, cond-mat/0603842, J. Comput. Theor. Nanosci.**5**, 1277 (2008) - Yu. Holovatch,
*Introduction to renormalization*, cond-mat/0606139, Condens. Matter Phys.**9**, 325 (2006) (introduction and application to non-ideal, e.g., frustrated or disordered, spin models) - K. J. Wiese and P. Le Doussal,
*Functional Renormalization for Disordered Systems, Basic Recipes and Gourmet Dishes*, cond-mat/0611346 - M. Mobilia, T. Reichenbach, H. Hinsch, T. Franosch, and E. Frey,
*Generic principles of active transport*, cond-mat/0612516 (discussing, among other things, the total asymmetric exclusion process [TASEP]) - W. Janke and A. M. J. Schakel,
*Spacetime Approach to Phase Transitions*, cond-mat/0612655 (extensive lecture notes on path-integral approach to thermal phase transitions) - J. Cardy,
*Conformal Field Theory and Statistical Mechanics*, arXiv:0807.3472, Les Houches summer school - J. Kurchan,
*Six out of equilibrium lectures*, arXiv:0901.1271, Les Houches summer school 2008 - H. G. Katzgraber,
*Introduction to Monte Carlo Methods*, arXiv:0905.1629, summer school on modern computational science, Oldenburg 2009 - M. Kastner,
*Monte Carlo methods in statistical physics: Mathematical foundations and strategies*, arXiv:0906.0858 - L. P. Kadanoff,
*Theories of Matter: Infinities and Renormalization*, arXiv:1002.2985 (on the theory of phase transitions) - C. Gogolin,
*Pure State Quantum Statistical Mechanics*, arXiv:1003.5058 (pedagogical review on how statistical physics arises from quantum mechanics, also contains new results) - F. S. Nogueira,
*Introduction to the field theory of classical and quantum phase transitions*, arXiv:1009.1603 - C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi,
*Statistical mechanics of classical and quantum computational complexity*, arXiv:1009.1635, Les Houches, 2009 - H. M. Jaeger and A. J. Liu,
*Far-From-Equilibrium Physics: An Overview*, arXiv:1009.4874 - N. Reshetikhin,
*Lectures on the integrability of the 6-vertex model*, arXiv:1010.5031, Les Houches 2008 - A. W. Sandvik,
*Computational Studies of Quantum Spin Systems*, AIP Conf. Proc.**1297**, 135 (2010) (extensive lecture notes) - M. Campisi, P. Hänggi, and P. Talkner,
*Colloquium: Quantum fluctuation relations: Foundations and applications*, Rev. Mod. Phys.**83**, 771 (2011) - F. J. Sevilla and L. Olivares-Quiroz,
*Revisiting the concept of chemical potential in classical and quantum gases: A perspective from Equilibrium Statistical Mechanics*, arXiv:1104.2611, Am. J. Phys. - Á. Rivas and S. F. Huelga,
*Open Quantum Systems. An Introduction*, arXiv:1104.5242 (Springer, Heidelberg, 2011) - H. Touchette,
*A basic introduction to large deviations: Theory, applications, simulations*, arXiv:1106.4146 - M. Bachmann,
*Monte Carlo Simulations*, arXiv:1107.0329 - I. Peschel,
*Entanglement in solvable many-particle models*, arXiv:1109.0159, Brazilian School on Statistical Mechanics 2011 - T. Vojta,
*Phases and phase transitions in disordered quantum systems*, arXiv:1301.7746 (and Griffiths phases)

- G. Sierra and M. A. Martin-Delgado,
*The Density Matrix Renormalization Group, Quantum Groups and Conformal Field Theory*, cond-mat/9811170 - F. Gronwald, F. W. Hehl, and J. Nitsch,
*Axiomatics of classical electrodynamics and its relation to gauge field theory*, physics/0506219

- Y. M. Galperin,
*Introduction to Modern Solid State Physics*, http://folk.uio.no/yurig/fys448/Fys448.html - C. B. Kellogg,
*An Introduction to Relativistic Electronic Structure Theory in Quantum Chemistry*, http://zopyros.ccqc.uga.edu/~kellogg/docs/rltvt/node1.html - T. Dietl,
*Lecture Notes on Semiconductor Spintronics*, arXiv:0801.0145, in*Modern Aspects of Spin Physics*, Lecture Notes in Physics**712**, ed. J. Fabian (Springer, Berlin, 2007), p. 1 - D. Xiao, M.-C. Chang, and Q. Niu,
*Berry Phase Effects on Electronic Properties*, arXiv:0907.2021 - J. T. Devreese,
*Lectures on Fröhlich Polarons from 3D to 0D - including detailed theoretical derivations*, arXiv:1012.4576 (extensive lecture notes) - N. A. Spaldin,
*A beginner's guide to the modern theory of polarization*, arXiv:1202.1831 (electric polarization)

- Y. M. Galperin,
*Quantum Transport*, http://folk.uio.no/yurig/quTpdf.pdf - D. A. Ryndyk, R. Gutierrez, B. Song, and G. Cuniberti,
*Green function techniques in the treatment of quantum transport at the molecular scale*, arXiv:0805.0628 - S. Kirino and K. Ueda,
*Nonlinear Transport through Quantum Dots Studied by the Time-Dependent DMRG*, arXiv:1105.1073

- A. K. Hartmann and M. Weigt,
*Introduction to graphs*, cond-mat/0602129, in A. K. Hartmann and M. Weigt,*Phase Transitions in Combinatorial Optimization Problems*(Wiley-VCH, Berlin, 2005) - G. Szabo and G. Fath,
*Evolutionary games on graphs*, cond-mat/0607344 (tutorial on game theory for physicist, relating it to non-equilibrium statistical mechanics, with applications to three important cases discussed in detail) - S. N. Majumdar,
*Random Matrices, the Ulam Problem, Directed Polymers & Growth Models, and Sequence Matching*, cond-mat/0701193 - U. Krey,
*The Aharonov-Bohm-Effect, Non-commutative Geometry, Dislocation Theory, and Magnetism*, arXiv:0711.0855 (short note sketching the connections between these topics) - J. Preskill,
*Quantum Computation*, http://www.theory.caltech.edu/people/preskill/ph229/ (also includes a review of quantum mechanics and quantum statistics) - C. Gros,
*Complex and Adaptive Dynamical Systems: A Primer*, arXiv:0807.4838, to be published by Springer (2008) (textbook on complex-system theory, mostly focusing on dynamical networks) - S. Mertens,
*Random Number Generators: A Survival Guide for Large Scale Simulations*, arXiv:0905.4238 (how to do it in parallel simulations) - V. E. Kravtsov,
*Random matrix theory: Wigner-Dyson statistics and beyond*, arXiv:0911.0639 (lecture notes, SISSA) - A. Doikou, S. Evangelisti, G. Feverati, and N. Karaiskos,
*Introduction to Quantum Integrability*, arXiv:0912.3350, Int. J. Mod. Phys. A**25**, 3307 (2010) (in 1+1 dimension, mainly in Heisenberg-type models, algebraic Bethe ansatz) - M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea,
*Gauge fields in graphene*, arXiv:1003.5179**P** - R. Jackiw,
*Fractional and Majorana Fermions: The Physics of Zero Energy Modes*, arXiv:1104.4486 (introductory) - A. Gubin and L. F. Santos,
*Quantum chaos: an introduction via chains of spins-1/2*, arXiv:1106.5557 - F. Wilczek,
*Introduction to Quantum Matter*, arXiv:1109.1523, Nobel symposium 2010 - M. E. J. Newman,
*Complex Systems: A Survey*, arXiv:1112.1440, Am. J. Phys.**79**, 800 (2011) - P. Young,
*Everything you wanted to know about Data Analysis and Fitting but were afraid to ask*, arXiv:1210.3781 - H. Skarke,
*Why is the Legendre Transformation Involutive?*, arXiv:1209.6193 (geometric interpretation of the Legendre transformation) - T. J. Phillips,
*Exotic atoms: Antimatter may matter*, Nature**529**, 294 (2016) (interesting but not mean-stream comment on why repulsive gravitational interaction between matter and antimatter may solve many of today's mysteries)

- D. Belitz and T. R. Kirkpatrick,
*The Anderson-Mott transition*, Rev. Mod. Phys.**66**, 261 (1994) (about the interplay of disorder and electronic correlations) - S. Sachdev,
*Quantum phase transitions of correlated electrons in two dimensions*, cond-mat/0109419, Physica A**313**, 252 (2002) - A. J. Millis,
*Whither Correlated Electron Theory?*, cond-mat/0112508, Physica B**P** - D. Belitz and T. R. Kirkpatrick,
*Why Quantum Phase Transitions are Interesting*, J. Low Temp. Phys.**126**, 1107 (2002) - E. Dagotto,
*Complexity in Strongly Correlated Electronic Systems*, Science**309**, 257 (2005) (inhomogeneous equilibrium states) - A. Auerbach,
*Computing Effective Hamiltonians of Doped and Frustrated Antiferromagnets By Contractor Renormalization*, cond-mat/0510738 - P. Coleman,
*Theory Perspective: SCES '05 Vienna*, cond-mat/0512463 (highlights from the SCES '05 conference on strongly correlated electron materials) - P. Fulde, P. Thalmeier, and G. Zwicknagl,
*Strongly correlated electrons*, cond-mat/0607165, Solid State Physics**60**(Elsevier, 2006) (high-resolution copy) - T. P. Devereaux and R. Hackl,
*Inelastic Light Scattering From Correlated Electrons*, cond-mat/0607554, Rev. Mod. Phys. - G. A. Fiete,
*The spin-incoherent Luttinger liquid*, cond-mat/0611597, Rev. Mod. Phys. - I. Bloch, J. Dalibard, and W. Zwerger,
*Many-Body Physics with Ultracold Gases*, arXiv:0704.3011 - S. Sachdev,
*Exotic phases and quantum phase transitions: model systems and experiments*, arXiv:0901.4103 - J. K. Jain and P. W. Anderson,
*Beyond the Fermi Liquid Paradigm: Hidden Fermi Liquids*, arXiv:0905.1105 (discussed for RVB state in HTSC and composite fermions in the fractional QHE) - S. Sachdev,
*Finite temperature dissipation and transport near quantum critical points*, arXiv:0910.1139 - E. C. Andrade, E. Miranda, and V. Dobrosavljevic,
*Quantum ripples in strongly correlated metals*, arXiv:0910.1837 (Friedel oscillations are found to be suppressed by strong electronic correlations, method: slave-boson mean-field theory) - D. J. Scalapino, E. Berg, and S. A. Kivelson,
*Mesoscopics and the High T*, arXiv:0911.3695 (a few example for what can be learned about the bulk systems from models in reduced dimensions)_{c}Problem - Q. Si and F. Steglich,
*Heavy Fermions and Quantum Phase Transitions*, Science**329**, 1161 (2010) - P. Coleman,
*Quantum Criticality and Novel Phases: A panel discussion*, arXiv:1001.0185, phys. stat. sol. (summary of panel discussion on quantum criticality and novel phases, Dresden 2009) - A. A. Shashkin and S. V. Kravchenko,
*Quantum phase transitions in two-dimensional electron systems*, arXiv:1002.2629, in*Quantum Phase Transitions*, ed. by L. Carr (CRC Press / Taylor & Francis) - S. Sachdev,
*The landscape of the Hubbard model*, arXiv:1012.0299 (phases of the Hubbard model on various lattices) *Special issue on strongly correlated electron systems*, J. Phys.: Condens. Matter**23**, issue 9 (2011)- S. Sachdev and B. Keimer,
*Quantum Criticality*, arXiv:1102.4628, edited version: Physics Today**64**, 29 (2011) - S. Sachdev,
*The quantum phases of matter*, arXiv:1203.4565 - I. A. Zaliznyak and J. M. Tranquada,
*Neutron Scattering and Its Application to Strongly Correlated Systems*, arXiv:1304.4214 - W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents,
*Correlated quantum phenomena in the strong spin-orbit regime*, arXiv:1305.2193, Ann. Rev. Cond. Mat. Phys. (relevant for iridates) - J. P. Eisenstein,
*Exciton Condensation in Bilayer Quantum Hall Systems*, arXiv:1306.0584

- K. Hallberg,
*Density Matrix Renormalization*, cond-mat/9910082 - W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
*Quantum Monte Carlo simulations of solids*, Rev. Mod. Phys.**73**, 33 (2001) - M. Potthoff,
*Dynamical variational principles for strongly correlated electron systems*, cond-mat/0503715;*Systematics of approximations constructed from dynamical variational principles*, cond-mat/0511729 - M. A. Stephanov, J. J. M. Verbaarschot, and T. Wettig,
*Random Matrices*, hep-ph/0509286, in Wiley Encyclopedia of Electrical and Electronics Engineering, Supp. 1 (2001) (discusses both hermitian and nonhermitian random matrices) - M. N. Kiselev,
*Semi-fermionic representation for spin systems under equilibrium and non-equilibrium conditions*, cond-mat/0601338 (introduction to and generalization of Popov-Fedetov representation of spins, mapping of spins onto particles with neither bosonic nor fermionic Matsubara frequencies) - P. Kopietz,
*Bosonization of Interacting Fermions in Arbitrary Dimensions*, cond-mat/0605402, Lecture Notes in Physics (Springer, Berlin, 1997) (long review, put on archive because currently out of print) - U. Schollwöck and S. R. White,
*Methods for Time Dependence in DMRG*, cond-mat/0606018, in*Effective models for low-dimensional strongly correlated systems*, edited by G. G. Batrouni and D. Poilblanc (AIP, Melville, New York, 2006), p. 155 - K. Hallberg,
*New Trends in Density Matrix Renormalization*, cond-mat/0609039, Adv. Phys.**55**(2006) - I. P. McCulloch,
*From density-matrix renormalization group to matrix product states*, cond-mat/0701428 - K. Held, O. K. Andersen, M. Feldbacher, A. Yamasaki, and Y.-F. Yang,
*Bandstructure meets many-body theory: The LDA+DMFT method*, arXiv:0801.2634, J. Phys.: Condensed Matter - M. Mineev-Weinstein, M. Putinar, and R. Teodorescu,
*Random Matrices in 2D, Laplacian Growth and Operator Theory*, arXiv:0805.0049 (2D here means 2D support of eigenvalues in the complex plane, i.e., for nonhermitian random matrices) - D. Sénéchal,
*An introduction to quantum cluster methods*, arXiv:0806.2690 (including cluster generalization of DMFT and M. Posthoff's self-energy functional theory) - S. Sachdev and M. Müller,
*Quantum criticality and black holes*, J. Phys.: Condens. Matter**21**, 164216 (2009) (review consequences of a duality between anti-de Sitter cosmology and conformal field theory for quantum critical points in certain systems); S. Sachdev,*Condensed matter and AdS/CFT*, arXiv:1002.2947; S. Sachdev,*Strange metals and the AdS/CFT correspondence*, arXiv:1010.0682; L. Huijse and S. Sachdev,*Fermi surfaces and gauge-gravity duality*, arXiv:1104.5022; S. Sachdev,*What can gauge-gravity duality teach us about condensed matter physics?*, arXiv:1108.1197, Annual Reviews of Condensed Matter Physics - A. L. Kuzemsky,
*Statistical mechanics and the physics of many-particle model systems*, Phys. Part. Nucl.**40**, 949 (2009) (extensive review on many-particle theory, with many historical remarks) - C. W. J. Beenakker,
*Applications of random matrix theory to condensed matter and optical physics*, arXiv:0904.1432 - R. Resta,
*Electrical polarization and orbital magnetization: the modern theories*, J. Phys.: Condens. Matter**22**, 123201 (2010) - M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, and
F. A. Wolf,
*New theoretical approaches for correlated systems in nonequilibrium*, arXiv:1005.5097 - U. Schollwöck,
*The density-matrix renormalization group in the age of matrix product states*, arXiv:1008.3477 - D. W. Snoke,
*The Quantum Boltzmann Equation in Semiconductor Physics*, arXiv:1011.3849 - E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and
P. Werner,
*Continuous-time Monte Carlo methods for quantum impurity models*, arXiv:1012.4474 - A. W. Sandvik,
*Computational Studies of Quantum Spin Systems*, arXiv:1101.3281, AIP Conf. Proc.**1297**, 135 (2010) (extensive lecture notes) - U. Schollwöck,
*The density-matrix renormalization group: a short introduction*, Philos. Transact. A Math. Phys. Eng. Sci.**369**, 2643 (2011) (using language of matrix-product states) - A. L. Kuzemsky,
*Statistical Mechanics and the Physics of the Many-Particle Model Systems*, arXiv:1101.3423, Phys. Part. Nuclei**40**, 949 (2009) - W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer,
*Functional renormalization group approach to correlated fermion systems*, arXiv:1105.5289 - M. Potthoff,
*Self-energy-functional theory*, arXiv:1108.2183, in*Theoretical Methods for Strongly Correlated Systems*, edited by A. Avella and F. Mancini (Springer, 2011) - E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii,
*Generalized dynamical mean-field theory in physics of strongly correlated systems*, arXiv:1109.2305 - D. Vollhardt, K. Byczuk, and M. Kollar,
*Dynamical Mean-Field Theory*, arXiv:1109.4833 - I. Boettcher, J. M. Pawlowski, and S. Diehl,
*Ultracold atoms and the Functional Renormalization Group*, arXiv:1204.4394 - J. E. Drut and A. N. Nicholson,
*Lattice methods for strongly interacting many-body systems*, arXiv:1208.6556 (lattice field theory) - A. Goetschy and S. E. Skipetrov,
*Euclidean random matrices and their applications in physics*, arXiv:1303.2880 (euclidian random matrices: the components are deterministic functions of separations between random points in an euclidian space)

- P. Elliott, K. Burke, and F. Furche,
*Excited states from time-dependent density functional theory*, cond-mat/0703590 - C. A. Ullrich and V. Turkowski,
*Time-dependent density-functional theory for electronic excitations in materials: basics and perspectives*, arXiv:0808.2021 - R. C. Albers, N. E. Christensen, and A. Svane,
*Hubbard-U Band-Structure Methods*, arXiv:0907.1028 (also clarifying their conceptual position compared to fully*ab-initio*and many-particle approaches) - P. Koskinen and V. Mäkinen,
*Density-functional tight-binding for beginners*, arXiv:0910.5861, Comp. Mat. Sci.**47**, 237 (2009) (note that an open-source program exists, called hotbit) - P. Gori-Giorgi and M. Seidl,
*Density functional theory for strongly-interacting electrons: Perspectives for Physics and Chemistry*, arXiv:1008.2327, Phys. Chem. Chem. Phys. - N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt,
*Maximally localized Wannier functions: Theory and applications*, Rev. Mod. Phys.**84**, 1419 (2012) - K. Burke,
*Perspective on density functional theory*, arXiv:1201.3679 (also discussing its limitations) - R. O. Jones,
*Density functional theory: Its origins, rise to prominence, and future*, Rev. Mod. Phys.**87**, 897 (2015)

- I. Zutic, J. Fabian, and S. Das Sarma,
*Spintronics: Fundamentals and applications*, Rev. Mod. Phys.**76**, 323 (2004) - R. Janisch, P. Gopal, and N. A. Spaldin,
*Transition metal-doped TiO*, J. Phys.: Condens. Matter 17, R657 (2005)_{2}and ZnO - present status of the field**P** - S. Saikin, Y. V. Pershin, and V. Privman,
*Modeling for Semiconductor Spintronics*, cond-mat/0504001 (a review on semiclassical modelling for spintronics) - T. Fukumura, H. Toyosaki, and Y. Yamada,
*Magnetic oxide semiconductors*, cond-mat/0504168, Semicond. Sci. Technol.**20**, S103 (2005) - E. I. Rashba,
*Spin-orbit coupling and spin transport*, cond-mat/0507007 - J. Sinova, S. Murakami, S.-Q. Shen, and M.-S. Choi,
*Spin-Hall effect: Back to the Beginning on a Higher Level*, cond-mat/0512054 (summary of workshop, general agreement on what is understood and what is not) - J. Schliemann,
*Spin Hall Effect*, cond-mat/0602330, Int. J. Mod. Phys. B**20**, 1015 (2006) - T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald,
*Theory of ferromagnetic (III,Mn)V semiconductors*, Rev. Mod. Phys.**78**, 809 (2006) - E. I. Rashba,
*Semiconductor Spintronics: Progress and Challenges*, cond-mat/0611194 - W. J. M. Naber, S. Faez, and W. G. van der Wiel,
*Organic Spintronics*, cond-mat/0703455 *Spin Electronics*(special issue), J. Phys.: Condens. Matter**19**, issue 16 (2007), contains several papers on DMS, including- T. Dietl,
*Origin of ferromagnetic response in diluted magnetic semiconductors and oxides*,*ibid.*165204, also in arXiv:0711.0340 - T. C. Schulthess, W. M. Temmerman, Z. Szotek, A. Svane, and L. Petit,
*First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors*,*ibid.*165207, also in cond-mat/0610378 (SIC-LSDA, supporting existing "standard models" for these DMS, in particular very different behavior of GaAs vs. GaN, with GaP intermediate)

- T. Dietl,
- I. Zutic, J. Fabian, and S. C. Erwin,
*Bipolar spintronics: From spin injection to spin-controlled logic*, arXiv:0706.2190 - M. Bibes and A. Barthelemy,
*Oxide spintronics*, arXiv:0706.3015 - T. Dietl,
*Origin and control of ferromagnetism in dilute magnetic semiconductors and oxides*, arXiv:0711.0343, 52nd MMM Conference 2007, J. Appl. Phys. - J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic,
*Semiconductor Spintronics*, arXiv:0711.1461, Acta Physica Slovaca**57**, 565 (2007) (extensive review, mostly concerned with spin dynamics and spin transport, not with materials-science aspects) - H. Ohno and T. Dietl,
*Spin-transfer physics and the model of ferromagnetism in (Ga,Mn)As*, J. Magn. Magn. Mat.**320**, 1293 (2008) *Focus on Dilute Magnetic Semiconductors*(focus issue), New J. Phys.**10**, May issue (part) (2008) (not limited to III-V compounds, mostly concerned with applied research)- K. S. Burch, D. D. Awschalom, and D. N. Basov,
*Optical Properties of III-Mn-V Ferromagnetic Semiconductors*, arXiv:0810.3669 - C. Ertler, A. Matos-Abiague, M. Gmitra, M. Turek, and J. Fabian,
*Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs*, arXiv:0811.0500 - E. M. Hankiewicz and G. Vignale,
*Spin-Hall effect and spin-Coulomb drag in doped semiconductors*, J. Phys.: Condens. Matter**21**253202 (2009) - V. L. Korenev,
*Comment on The Rise of Semiconductor Spintronics*, arXiv:0904.3034; a comment on a timeline of spin physics published in Nature, pointing out that many important breakthroughs occured earlier than stated there - D. Culcer,
*Steady-state spin densities and currents*, arXiv:0906.5111 - K. Potzger and S. Zhou,
*Non-DMS related ferromagnetism in transition metal doped zinc oxide*, arXiv:0908.0645 - J.-E. Wegrowe,
*Spin Transfer from the point of view of the ferromagnetic degrees of freedom*, arXiv:0910.2890, Solid State Commun. (focus on dissipated power) - N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong,
*Anomalous Hall effect*, Rev. Mod. Phys.**82**, 1539 (2010) - A. Zunger, S. Lany, and H. Raebiger,
*The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory*, Physics**3**, 53 (2010) (possible pitfalls in applying DFT to diluted magnetic semiconductors, relatively long "Trends" article) - A. Bonanni and T. Dietl,
*A story of high-temperature ferromagnetism in semiconductors*, arXiv:1101.1981, Chem. Soc. Rev.**39**, 528 (2010) - T. Dietl,
*Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective*, arXiv:1108.2582 - F. Natali, B. J. Ruck, N. O. V. Plank, H. J. Trodahl, S. Granville,
C. Meyer, and W. R. L. Lambrecht,
*Rare-earth mononitrides*, arXiv:1208.2410 (review on recent experimental and theoretical progress from a spintronics point of view) - M. I. Dyakonov,
*Spin Hall Effect*, arXiv:1210.3200 - P. Esquinazi, W. Hergert, D. Spemann, A. Setzer, and A. Ernst,
*Defect-Induced Magnetism in Solids*, arXiv:1304.0137 - T. Dietl and H. Ohno,
*Dilute ferromagnetic semiconductors: Physics and spintronic structures*, Rev. Mod. Phys.**86**, 187 (2014) (extensive review on experiment and theory, focus on structured DMS) - T. Jungwirth, J. Wunderlich, V. Novák, K. Olejnik, B. L.
Gallagher, R. P. Campion, K. W. Edmonds, A. W. Rushforth, A. J. Ferguson, and
P. Nemec,
*Spin-dependent phenomena and device concepts explored in (Ga,Mn)As*, Rev. Mod. Phys.**86**, 855 (2014) - T. Dietl, K. Sato, T. Fukushima, A. Bonanni, M. Jamet, A. Barski, S.
Kuroda, M. Tanaka, P. Nam Hai, and H. Katayama-Yoshida,
*Spinodal nanodecomposition in semiconductors doped with transition metals*, Rev. Mod. Phys.**87**, 1311 (2015) (review on computational modeling and experiments, various classes of DMS, importance of morphology [formation of nanodots or nanocolumns] of transition-metal-rich material for high-temperature ferromagnetic response) - T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich,
*Antiferromagnetic spintronics*, Nature Nanotechnology**11**, 231 (2016)

- N. Andrei, K. Furuya, and J. H. Lowenstein,
*Solution of the Kondo problem*, Rev. Mod. Phys.**55**, 331 (1983) (reviews the solution via the Bethe ansatz, also generalizations to arbitrary impurity spin and to SU(*N*) symmetry) - N. E. Bickers,
*Review of techniques in the large-N expansion for dilute magnetic alloys*, Rev. Mod. Phys.**59**, 845 (1987) - D. Belitz, and T. R. Kirkpatrick,
*Quantum critical behavior of itinerant ferromagnets*, cond-mat/9609070, J. Phys.: Cond. Matter**8**, 9707 (1996) (also including disorder) - M. Ulmke, P. J. H. Denteneer, V. Janis, R. T. Scalettar, A. Singh, D.
Vollhardt, and G. T. Zimanyi,
*Disorder and Impurities in Hubbard-Antiferromagnets*, Advances in Solid State Physics**38**, 369 (Vieweg, Wiesbaden, 1999) - M. Kiwi,
*Origin of the magnetic proximity effect*, Mat.Res. Soc. Symp. Proc.**746**, Q5.2.1 (2003)**P** - O. Fruchart and A. Thiaville,
*Magnetism in reduced dimensions*, cond-mat/0511362 (short review on selected topics) - A. L. Kuzemsky,
*Physics of Complex Magnetic Materials: Quasiparticle Many-Body Dynamics*, cond-mat/0512183 (short survey of author's works) - D. I. Khomskii,
*Multiferroics: different ways to combine magnetism and ferroelectricity*, cond-mat/0601696 - H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle,
*Fermi-liquid instabilities at magnetic quantum phase transitions*, cond-mat/0606317, Rev. Mod. Phys. - P. Fröbrich and P. J. Kuntz,
*Many-body Green's function theory of Heisenberg films*, cond-mat/0607675, Phys. Rep. - P. Mavropoulos and I. Galanakis,
*A review of the electronic and magnetic properties of tetrahedrally bonded half-metallic ferromagnets*, cond-mat/0611006, J. Phys.: Condens. Matter (zinc-blende CrAs, CrTe etc.) - D. Karevski,
*Ising Quantum Chains*, cond-mat/0611327 *Half Metallic Ferromagnets*(special issue), J. Phys.: Condens. Matter**19**, issue 31 (2007)- S. Jia, N. Ni, S. L. Bud'ko, and P. C. Canfield,
*Magnetic properties of Gd*, arXiv:0708.1170 (magnetic moment per Gd is not enhanced, unlike in Gd-doped DMS)_{x}Y_{1-x}Fe_{2}Zn_{20}: dilute, large,**S**moments in a nearly ferromagnetic Fermi liquid - S. Sachdev,
*Quantum magnetism and criticality*, arXiv:0711.3015 (links well-known magnetic phases with modern developments including deconfined criticality and emergent photons, also discusses superconductivity) - N. A. Sinitsyn,
*Semiclassical theories of the anomalous Hall effect*, J. Phys.: Condens. Matter**20**, 023201 (2008) - E. I. Rashba,
*Side jump contribution to spin-orbit mediated Hall effects and Berry curvature*, arXiv:0804.4181 - E. B. Sonin,
*Spin currents and spin superfluidity*, arXiv:0807.2524 (a long review, updated March 2010) - A. Auerbach and D. P. Arovas,
*Schwinger Bosons Approaches to Quantum Antiferromagnetism*, arXiv:0809.4836, Trieste Summer School 2007, in*Highly Frustrated Magnetism*, C. Lacroix, P. Mendels, and F. Mila (Eds.) *Multiferroics*(special issue), J. Phys.: Condens. Matter**20**, number 43 (2008)- J. T. Chalker,
*Geometrically frustrated antiferromagnets: statistical mechanics and dynamics*, arXiv:0901.3492, Trieste Summer School 2007, in*Highly Frustrated Magnetism*, C. Lacroix, P. Mendels, and F. Mila (Eds.) - K. H. Bennemann,
*Magnetic nanostructures*, J. Phys.: Condens. Matter**22**, 243201 (2010) (review concentrating on works from own group) - J. R. Friedman and M. P. Sarachik,
*Single-molecule Nanomagnets*, arXiv:1001.4194 - V. Yu. Irkhin,
*Ideas by S. V. Vonsovsky and Modern Model Treatment of Magnetism*, arXiv:1006.0108 - A. Dutta, U. Divakaran, D. Sen, B. K. Chakrabarti, T. F. Rosenbaum, and
G. Aeppli,
*Transverse field spin models: From Statistical Physics to Quantum Information*, arXiv:1012.0653, Rev. Mod. Phys. *Geometrically frustrated magnetism*(special issue), J. Phys.: Condens. Matter**23**, number 16 (2011)- E. Abrahams and Q. Si,
*Quantum criticality in the iron pnictides and chalcogenides*, J. Phys.: Condens. Matter**23**, 223201 (2011) (short topical review) - M. J. P. Gingras and P. Henelius,
*Collective Phenomena in the LiHo*, arXiv:1103.1537, J. Phys.: Condensed Matter (relatively short theoretical and experimental review)_{x}Y_{1-x}F_{4}Quantum Ising Magnet: Recent Progress and Open Questions - J. Wen, G. Xu, G. Gu, J. M. Tranquada, and R. J. Birgeneau,
*Single crystal growth and properties of iron-chalcogenide superconductors*, arXiv:1104.0695 (magnetic and superconducting properties) - T. Thonhauser,
*Theory of Orbital Magnetization in Solids*, arXiv:1105.5251 - C. Castelnovo, R. Moessner, and S. L. Sondhi,
*Spin Ice, Fractionalization and Topological Order*, arXiv:1112.3793 *Domain wall dynamics in nanostructures*(special issue), J. Phys.: Condens. Matter**24**, issue 2 (2012)*Virtual Issue: Quantum Molecular Magnets*, Editorial: Inorg. Chem.**51**, 12055 (2012)- D. Belitz and T. R. Kirkpatrick,
*A compilation of metallic systems that show a quantum ferromagnetic transition*, arXiv:1204.0873 (short paper with a list of such systems, suggest that a butterfly-type phase diagram with a tricritical point and two quantum critical end points is generic) - L. Fritz and M. Vojta,
*The Physics of Kondo Impurities in Graphene*, arXiv:1208.3113, Rep. Prog. Phys. - P. Dai, J. Hu, and E. Dagotto,
*Magnetism and its microscopic origin in iron-based high-temperature superconductors*, arXiv:1209.0381, Nature Phys.**8**, 709 (2012) - E. Dagotto,
*The Unexpected Properties of Alkali Metal Iron Selenide Superconductors*, arXiv:1210.6501, Rev. Mod. Phys. - C. Nisoli, R. Moessner, and P. Schiffer,
*Artificial Spin Ice: Designing and imaging magnetic frustration*, Rev. Mod. Phys.**85**, 1473 (2013) (giant spins of judiciously arranged single-domain particles; changed compared to original arXiv version) - M. P. Sarachik,
*Magnetic Avalanches in Molecular Magnets*, arXiv:1302.5100 (bulk, magnetic deflagration) - W.-C. Lee, W. Lv, and H. Z. Arham,
*Elementary Excitations due to Orbital Degrees of Freedom in Iron Based Superconductors*, arXiv:1303.6295 (review focusing on orbital, as opposed to spin-nematic, scenario of orthorhombic distortion) - P. Subedi, B. Wen, Y. Yeshurun, M. P. Sarachik, A. J. Millis, and A. D.
Kent,
*Quantum Fluctuations and Long-Range Order in Molecular Magnets*, arXiv:1305.4646 - R. M. Fernandes, A. V. Chubukov, and J. Schmalian,
*What drives nematic order in iron-based superconductors?*, Nature Physics**10**, 97 (2014) - Z. Nussinov and J. van den Brink,
*Compass models: Theory and physical motivations*, Rev. Mod. Phys.**87**, 1 (2015) - P. Dai,
*Antiferromagnetic order and spin dynamics in iron-based superconductors*, Rev. Mod. Phys.**87**, 855 (2015) (review of neutron-scattering results) - J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth,
*Spin Hall effects*, Rev. Mod. Phys.**87**, 1213 (2015) - M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick,
*Metallic quantum ferromagnets*, Rev. Mod. Phys.**88**, 025006 (2016) (and their quantum phase transitions)

- J. Rammer and H. Smith,
*Quantum field-theoretical methods in transport theory of metals*, Rev. Mod. Phys.**58**, 323 (1986) - D. C. Mattis and M. L. Glasser,
*The uses of quantum field theory in diffusion-limited reactions*, Rev. Mod. Phys.**70**, 979 (1998) - M. A. Ratner,
*Introducing molecular electronics*, Materials Today**5**, 20 (2002); K. S. Kwok and J. C. Ellenbogen,*Moletronics: future electronics*, Materials Today**5**, 28 (2002) - D. Porath, G. Cuniberti, and R. Di Felice,
*Charge Transport in DNA-Based Devices*, cond-mat/0403640, Topics in Current Chemistry**237**, edited by G. Schuster, (Springer, Berlin, 2004), p. 183 (discusses experimental and theoretical situation) - J. König, J. Martinek, J. Barnás, and G. Schön,
*Quantum Dots Attached to Ferromagnetic Leads: Exchange Field, Spin Precession, and Kondo Effect*, cond-mat/0404509 - Y. Xue and M. A. Ratner,
*Molecular Electronics: From Physics to Computing*, cond-mat/0508477, in*Nanotechnology: Science and Computation*, edited by J. Chen, N. Jonoska, and G. Rozenberg (Springer, Berlin, 2006) - Ya. M. Blanter,
*Recent Advances in Studies of Current Noise*, cond-mat/0511478 - M. Pustilnik,
*Kondo effect in nanostructures*, cond-mat/0512671 - A. P. Jauho,
*Modelling of inelastic effects in molecular electronics*, J. Phys.: Conf. Ser.**35**, 313 (2006) - S. Sanvito and A. Reily Rocha,
*Molecular-Spintronics: the art of driving spin through molecules*, cond-mat/0605239, J. Comput. Theor. Nanosci.**3**, 624 (2006)**P** - G. Stefanucci, S. Kurth, E. K. U. Gross, and A. Rubio,
*Time dependent transport phenomena*, cond-mat/060733 (density-functional theory plus Keldysh formalism) - F. Evers and K. Burke,
*Pride, Prejudice, and Penury of ab initio transport calculations for single molecules*, cond-mat/0610413, in: CRC Handbook on Molecular and Nanoelectronics, edited by S. Lyshevski - A. M. Bratkovsky,
*Current rectification, switching, polarons, and defects in molecular electronic devices*, cond-mat/0611163, in: Polarons in Advanced Materials, edited by A. S. Alexandrov (Canopus/Springer, Bristol, 2007) - M. Grobis, I. G. Rau, R. M. Potok, and D. Goldhaber-Gordon,
*Kondo Effect in Mesoscopic Quantum Dots*, cond-mat/0611480, in: Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5 (Wiley) - M. Galperin, M. A. Ratner, and A. Nitzan,
*Molecular transport junctions: vibrational effects*, J. Phys.: Condens. Matter**19**, 103201 (2007) - M. Koentopp, C. Chang, K. Burke, and R. Car,
*Density functional calculations of nanoscale conductance*, J. Phys.: Condens. Matter**20**, 083203 (2008), cond-mat/0703591, (how LDA/GGA fail for weak tunneling through molecules and how to use time-dependent current DFT instead) *Charge transport in nanoscale junctions*(special issue), J. Phys.: Condens. Matter**20**, number 37 (2008)- D. R. Ward, G. D. Scott, Z. K. Keane, N. J. Halas, and D. Natelson,
*Electronic and optical properties of electromigrated molecular junctions*, arXiv:0802.3902 - S. Datta,
*Nanoelectronic Devices: A Unified View*, arXiv:0809.4460, Oxford Handbook on Nanoscience and Nanotechnology: Frontiers and Advances - L. E. F. Foa Torres and G. Cuniberti,
*AC transport in carbon-based devices: challenges and perspectives*, arXiv:0906.1664, C. R. Physique - S. J. van der Molen and P. Liljeroth,
*Charge transport through molecular switches*, J. Phys.: Condens. Matter**22**, 133001 (2010) (discuss mostly experimental research) - S. Andergassen, V. Meden, H. Schoeller, J. Splettstoesser, and M. R.
Wegewijs,
*Charge transport through single molecules, quantum dots, and quantum wires*, Nanotechn.**21**, 272001 (2010)**P** - N. M. R. Peres,
*Colloquium: The transport properties of graphene: An introduction*, Rev. Mod. Phys.**82**, 2673 (2010) - G. D. Scott and D. Natelson,
*Kondo Resonances in Molecular Devices*, arXiv:1003.1938 - W. Shinwari, J. Deen, E. Starikov, and G. Cuniberti,
*Electrical Conductance in Biological Molecules*, arXiv:1003.4027 - B. Kramer, A. MacKinnon, T. Ohtsuki, and K. Slevin,
*Finite Size Scaling Analysis of the Anderson Transition*, arXiv:1004.0285 - P. Wölfle and D. Vollhardt,
*Self-Consistent Theory of Anderson Localization: General Formalism and Applications*, arXiv:1004.3238 (discuss weak and strong localization) - E. R. Mucciolo and C. H. Lewenkopf,
*Disorder and Electronic Transport in Graphene*, arXiv:1006.0255 - A. D. Mirlin, F. Evers, I. V. Gornyi, and P. M. Ostrovsky,
*Anderson Transitions: Criticality, Symmetries, and Topologies*, arXiv:1007.0967 - D. Vuillaume,
*Molecular Nanoelectronics*, arXiv:1009.0527, IEEE Proc. - M. Dzero, J. Schmalian, and P. G. Wolynes,
*Glassiness in Uniformly Frustrated Systems*, arXiv:1011.2261 - S. Karthauser,
*Control of molecule-based transport for future molecular devices*, J. Phys.: Condens. Matter**23**, 013001 (2011) (conceptually based on Landauer formula) - S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. Roura-Bas,
and A. A. Aligia,
*Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions*, J. Phys.: Condens. Matter**23**, 243202 (2011) - Yu. V. Pershin and M. Di Ventra,
*Memory effects in complex materials and nanoscale systems*, Adv. Phys.**60**, 145 (2011) - M. Shiraishi and T. Ikoma,
*Molecular Spintronics*, arXiv:1102.4151 (short review, surprisingly excluding magnetic molecules) - S. Florens, A. Freyn, N. Roch, W. Wernsdorfer, F. Balestro, P. Roura-Bas,
and A. A. Aligia,
*Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions*, arXiv:1103.4849 - T. Kernreiter, M. Governale, A. R. Hamilton, and U. Zülicke,
*Charge transport by modulating spin-orbit gauge fields for quasi-onedimensional holes*, arXiv:1104.4520 - A. L. Kuzemsky,
*Electronic Transport in Metallic Systems and Generalized Kinetic Equations*, arXiv:1109.5532 - B. K. Nikolic, K. K. Saha, T. Markussen, and K. S. Thygesen,
*First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes*, arXiv:1111.0106 (review on transport calculations based on static DFT and NEGF) - M. P. Das and F. Green,
*Nonequilibrium mesoscopic transport: a genealogy*, J. Phys.: Condens. Matter**24**, 183201 (2012) (short historical review) - G. Parisi,
*Field theory and the physics of disordered systems*, arXiv:1201.5813 (proceedings paper pointing out the difficulties in treating disordered systems and a possible diagrammatic solution) - N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li,
*Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond*, Rev. Mod. Phys.**84**, 1045 (2012) - G. Allan, C. Delerue, C. Krzeminski, and M. Lannoo,
*Nanoelectronics*, arXiv:1207.1829, also in*Nanostructured Materials*, Electronic Materials: Science & Technology**8**, 161 (2004) (short review, note original publication year 2004) *Molecular switches at surfaces*(special section), J. Phys.: Condens. Matter**24**, 390201 (2012) (experimental and theoretical papers, conformational and electronic switching)- N. A. Zimbovskaya,
*Inelastic electron transport through molecular junctions*, arXiv:1301.5569, in Handbook of Nanophysics (Büttiker model for inelastic transport, described as being less complicated and time consuming than NEGF) - J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna,
*Nonequilibrium Green's function method for quantum thermal transport*, arXiv:1303.7317 - F. Haupt, M. Leijnse, H. L. Calvo, L. Classen, J. Splettstoesser, and
M. R. Wegewijs,
*Heat, molecular vibrations, and adiabatic driving in non-equilibrium transport through interacting quantum dots*, arXiv:1306.4343 - C. Barraud
*et al.*,*Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions*, Phys. Rev. Lett.**114**, 206603 (2015) (experimental: layer structure, CoPc layer made effectively thin, "nanometer range" by identation) - E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-Rasmussen, J.
Nygård, K. Flensberg, and L. P. Kouwenhoven,
*Quantum transport in carbon nanotubes*, Rev. Mod. Phys.**87**, 703 (2015) - B. N. Narozhny and A. Levchenko,
*Coulomb drag*, Rev. Mod. Phys.**88**, 025003 (2016)

- H. Hosono and Z.-A. Ren (editors),
*Iron-Based Superconductors*(focus issue), New J. Phys.**11**, 025003 et seq. (2009) - P. Phillips, T.-P. Choy, and R. G. Leigh,
*Mottness in High-Temperature Copper-Oxide Superconductors*, arXiv:0905.4637, Rep. Prog. Phys.**72**, 036501 (2009); P. Phillips,*Mottness: Identifying the Propagating Charge Modes in doped Mott Insulators*, arXiv:1001.5270, Rev. Mod. Phys. (2010) - F. Steglich, J. Arndt, S. Friedemann, C. Krellner, Y. Tokiwa, T.
Westerkamp, M. Brando, P. Gegenwart, C. Geibel, S. Wirth, and O.
Stockert,
*Superconductivity versus quantum criticality: what can we learn from heavy fermions?*, J. Phys.: Condens. Matter**22**, 164202 (2010) - J. A. Wilson,
*A perspective on the Fe-based superconductors*, J. Phys.: Condens. Matter**22**, 203201 (2010) - M. D. Lumsden and A. D. Christianson,
*Magnetism in Fe-based superconductors*, J. Phys.: Condens. Matter**22**, 203203 (2010) - M. R. Norman,
*Fermi-surface reconstruction and the origin of high-temperature superconductivity*, Physics**3**, 86 (2010) (...in the underdoped regime) - I. Mazin,
*Iron superconductivity weathers another storm*, Physics**4**, 26 (2011) (namely the discovery of superconductivity in K_{0.8}Fe_{2}Se_{2}) - J. A. Mydosh and P. M. Oppeneer,
*Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2*, Rev. Mod. Phys.**83**, 1301 (2011) - H.-H. Wen and S. Li,
*Materials and Novel Superconductivity in Iron Pnictide Superconductors*, Ann. Rev. Condens. Mat. Phys.**2**, 121 (2011) - D. N. Basov and A. V. Chubukov,
*Manifesto for a higher Tc - lessons from pnictides and cuprates*, arXiv:1104.1949 - G. R. Stewart,
*Superconductivity in Iron Compounds*, arXiv:1106.1618 (iron pnictides and chalcogenides) - M. R. Norman,
*Cuprates - An Overview*, arXiv:1108.3140 (brief, mainly theoretical) - A. V. Chubukov,
*Pairing mechanism in Fe-based superconductors*, arXiv:1110.0052, Annual Rev. Cond. Matter Phys.**3**, 57 (2012) - J. Hu and C. Xu,
*Nematic orders in Iron-based superconductors*, arXiv:1112.2713 - D. J. Scalapino,
*A Common Thread: The pairing interaction for the unconventional superconductors*, Rev. Mod. Phys.**84**, 1383 (2012), (spin-fluctuation-mediated pairing) - H. Oh, J. Moon, D. Shin, C.-Y. Moon, and H. J. Choi,
*Brief review on iron-based superconductors: are there clues for unconventional superconductivity?*, arXiv:1201.0237, Progr. Supercond.**13**, 65 (2011) - O. Stockert, S. Kirchner, F. Steglich, and Q. Si,
*Superconductivity in Ce- and U-based "122" heavy-fermion compounds*, arXiv:1202.4114 - H.-Y. Choi,
*Comments on the d-wave pairing mechanism for cuprate high T*, arXiv:1203.4652 (what is the pairing glue? how can we find out experimentally?)_{c}superconductors: Higher is different? - S. Kivelson,
*Incipient CDW Order in the Pseudo-Gap Phase of the Cuprates*, JCCM_OCTOBER2012_01, commentary for Journal Club for Condensed Matter Physics - E. Fradkin and S. A. Kivelson,
*High-temperature superconductivity: Ineluctable complexity*, News and Views, Nature Physics**8**, 864 (2012) (discussion of significance of observation of CDW correlations in YBCO, comparision to stripes in LSCO and LBCO); J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden,*Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67*, Nature Physics**8**, 871 (2012) - M. R. Norman,
*Unconventional Superconductivity*, arXiv:1302.3176, in*Novel Superfluids*, vol. 2, edited by K. H. Bennemann and J. B. Ketterson (Oxford) - T. Shibauchi, A. Carrington, and Y. Matsuda,
*Quantum critical point lying beneath the superconducting dome in iron-pnictides*, arXiv:1304.6387, Ann. Rev. Condens. Matter Phys.

- D. R. Harshman and A. P. Mills, Jr.,
*Concerning the nature of high-T*, Phys. Rev. B_{c}superconductivity: Survey of experimental properties and implications for interlayer coupling**45**, 10684 (1992) (contains tables of materials parameters for cuprates) - M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh,
*Magnetic, transport, and optical properties of monolayer copper oxides*, Rev. Mod. Phys.**70**, 897 (1998) (discuss, among many other things, the doping dependence of the antiferromagnetic correlation length) - J. C. Campuzano, M. R. Norman, and M. Randeria,
*Photoemission in the High T*, cond-mat/0209476, in_{c}Superconductors*Physics of Superconductors*, Vol. II, ed. K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2004), p. 167 (includes a general introduction to photoemission) - A. A. Kordyuk and S. V. Borisenko,
*ARPES on HTSC: simplicity vs. complexity*, cond-mat/0510218 - J. M. Tranquada,
*Charge stripes in cuprate superconductors: The middle way*, cond-mat/0510792;*Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates*, cond-mat/0512115;*Stripes and Superconductivity in Cuprates*, arXiv:1111.4268;*Spins, Stripes, and Superconductivity in Hole-Doped Cuprates*, arXiv:1305.4118 - J. Fink, S. Borisenko, A. Kordyuk, A. Koitzsch, J. Geck, V.
Zabalotnyy, M. Knupfer, B. Büchner, and H. Berger,
*Dressing of the charge carriers in high-T*, cond-mat/0512307 (ARPES)_{c}superconductors - R. K. Kremer, J. S. Kim, and A. Simon,
*Carbon Based Superconductors*, cond-mat/0701702 (carbides etc.) - J. E. Sonier, M. Ilton, V. Pacradouni, C. V. Kaiser, S. A. Sabok-Sayr, Y.
Ando, S. Komiya, W. N. Hardy, D. A. Bonn, R. Liang, and W. A. Atkinson,
*Inhomogeneous Magnetic-Field Response in YBa*, arXiv:0801.3481 (attributed to superconducting domains)_{2}Cu_{3}O_{y}and La_{2-x}Sr_{x}CuO_{4}Persisting Above the Bulk Superconducting Transition T_{c} *Latest developments in Fe-oxypnictide superconductors*, Supercond. Sci. Technol.**20-21**, virtual collection- M. R. Norman,
*High-temperature superconductivity in the iron pnictides*, Physics**1**, 21 (2008) - C. Pfleiderer,
*Superconducting phases of f-electron compounds*, arXiv:0905.2625, Rev. Mod. Phys. - K. Ishida, Y. Nakai, and H. Hosono,
*To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report*, arXiv:0906.2045, J. Phys. Soc. Jpn.**78**, 062001 (2009)**P** - J. A. Wilson,
*A perspective on pnictide superconductors*, arXiv:0912.4201 - Y. Mizuguchi and Y. Takano,
*A review of Fe-chalcogenide superconductors: the simplest Fe-based superconductor*, arXiv:1003.2696, J. Phys. Soc. Jpn. - D. R. Garcia and A. Lanzara,
*Through a Lattice Darkly - Shedding Light on Electron-Phonon Coupling in the High T*, arXiv:1005.0970 (ARPES, role of electron-phonon coupling)_{c}Cuprates - D. C. Johnston,
*The Puzzle of High Temperature Superconductivity in Layered Iron Pnictides and Chalcogenides*, arXiv:1005.4392 - J. Paglione and R. L. Greene,
*High-temperature superconductivity in iron-based materials*, arXiv:1006.4618 - D. S. Inosov, J. T. Park, A. Charnukha, Y. Li, A. V. Boris, B.
Keimer, and V. Hinkov,
*A crossover from weak to strong pairing in unconventional superconductors*, arXiv:1012.4041 (overview over ratio of the gap to the transition temperature for many superconductors) - D. Aoki and J. Flouquet,
*Ferromagnetism and Superconductivity in Uranium Compounds*, arXiv:1108.4807 - S. E. Sebastian, G. G. Lonzarich, and N. Harrison,
*Towards resolution of the Fermi surface in underdoped high-Tc superconductors*, arXiv:1112.1373 - N. Kimura and I. Bonalde,
*Non-Centrosymmetric Heavy-Fermion Superconductors*, arXiv:1201.1648, Lecture Notes in Physics**847** - L. Bretheau, C. Girit, L. Tosi, M. Goffman, P. Joyez, H. Pothier,
D. Esteve, and C. Urbina,
*Superconducting Quantum Point Contacts*, arXiv:1201.4739 (Josephson effect etc.) - S. E. Sebastian,
*Quantum Oscillations in Iron Pnictide Superconductors*, arXiv:1208.5862 (evolution of Fermi surfaces with doping, comparison to cuprates) - M. Hashimoto, I. M. Vishik, R.-H. He, T. P. Devereaux, and Z.-X. Shen,
*Energy gaps in high-transition-temperature cuprate superconductors*, Nature Phys.**10**, 483 (2014) (focus on ARPES) - P. Dai,
*Antiferromagnetic order and spin dynamics in iron-based superconductors*, Rev. Mod. Phys.**87**, 855 (2015) - Q. Si,
*Towards a Unified Description of the Electronic Orders in Iron-Based Superconductors: Insights from FeSe*, Journal Club for Condensed Matter Physics July 2016, 2

- W. Brenig,
*Aspects of electron correlations in the cuprate superconductors*, Phys. Rep.**251**, 153 (1995) - P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and
F. C. Zhang,
*The Physics Behind High-Temperature Superconducting Cuprates: The "Plain Vanilla" Version Of RVB*, cond-mat/0311467; P. W. Anderson,*Present status of the theory of high T*, cond-mat/0510053_{c}cuprates - C. M. Varma,
*Notes on RVB-Vanilla by Anderson et al.*, cond-mat/0312385 (critical discussion of preceding paper) - J. Dukelsky, S. Pittel, and G. Sierra,
*Exactly solvable Richardson-Gaudin models for many-body quantum systems*, Rev. Mod. Phys.**76**, 643 (2004) - M. R. Norman, D. Pines, and C. Kallin,
*The pseudogap: friend or foe of high T*, to be published in Adv. in Physics, cond-mat/0507031 (summary of a summer 2004 Aspen workshop)_{c}? - S. A. Kivelson and E. Fradkin,
*How optimal inhomogeneity produces high temperature superconductivity*, cond-mat/0507459 - F. Vidal, J. A. Veira, J. Maza, J. Mosqueira, and C. Carballeira,
*On the interplay between T*, cond-mat/0510467_{c}-inhomogeneities at long length scales and thermal fluctuations around the average superconducting transition in cuprates - A. Mourachkine,
*Room-Temperature Superconductivity*, cond-mat/0606187, book (Cambridge International Science Pub., Cambridge, 2004) - T. H. Geballe,
*The never ending search for high temperature superconductivity*, cond-mat/0608368 - D. J. Scalapino,
*Numerical Studies of the 2D Hubbard Model*, cond-mat/0610710 (also note the addendum, which presents a broader overview over the field of cuprates) - G. Baskaran,
*Superconductivity in optimally doped Cuprates: BZA Program works well & Superexchange is the Glue*, cond-mat/0611548 (review of successes of RVB picture) - P. Phillips,
*Mottness*, cond-mat/0702348, Ann. Phys.**321**, 1634 (2006) - J. Spalek,
*t-J model then and now: A personal perspective from the pioneering times*, arXiv:0706.4236 - P. A. Lee,
*From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics*, arXiv:0708.2115 - S. Chakravarty,
*High temperature superconductivity: from complexity to simplicity*, arXiv:0802.1216, longer version of Science**319**, 735 (2008) (brief discussion of new trends in underdoped cuprates: hole and electron pockets in normal state) - S. A. Kivelson and H. Yao,
*Fe-based superconductors: unity or diversity?*, arXiv:0811.3973, corrected version of Nature Materials**7**, 927 (2008) (short comparison of oxypnictide and cuprate physics) - K. Le Hur and T. M. Rice,
*Superconductivity close to the Mott state: From condensed-matter systems to superfluidity in optical lattices*, arXiv:0812.1581 - J. Zaanen,
*Condensed-matter physics: The pnictide code*, Nature**457**, 546 (2009) - I. I. Mazin and J. Schmalian,
*Pairing Symmetry and Pairing State in Ferropnictides: Theoretical Overview*, arXiv:0901.4790 - T. Senthil and P. A. Lee,
*A synthesis of the phenomenology of the underdoped cuprates*, arXiv:0903.0870 - J. C. Phillips,
*Prediction of High Transition Temperatures in Ceramic Superconductors*, arXiv:0903.1306 (contains an entertaining review of the history of high-temperature superconductivity outside of the main stream, predictions based on chemical trends, using Bayesian probability theory) - V. Barzykin and D. Pines,
*Universal Behavior and the Two-component Character of Magnetically Underdoped Cuprate Superconductors*, arXiv:0903.1835, Adv. Phys.**58**, 1 (2009) - S. Sachdev,
*Where is the quantum critical point in the cuprate superconductors?*, arXiv:0907.0008, phys. stat. solidi, workshop on quantum criticality and novel phases, Dresden**P**;*Quantum criticality and the phase diagram of the cuprates*, arXiv:0910.0846 (similar shorter paper);*Quantum phase transitions of antiferromagnets and the cuprate superconductors*, arXiv:1002.3823, Les Houches (2009) - M. Eschrig, C. Iniotakis, and Y. Tanaka,
*Theoretical aspects of Andreev spectroscopy and tunneling spectroscopy in non-centrosymmetric superconductors: a topical review*, arXiv:1001.2486 - S. Chakravarty,
*Key issues in theories of high temperature superconductors*, arXiv:1006.4180 (cuprates, focus on interpreration of magnetic-oscillation experiments) - P. W. Anderson,
*Personal history of my engagement with cuprate superconductivity, 1986-2010*, arXiv:1011.2736 - P. Phillips,
*Fractionalize This*, arXiv:1012.1861, Nature Phys.**6**, 931 (2010) (composite vs. fractionalized excitations in cuprates) - J. Zaanen,
*A modern, but way too short history of the theory of superconductivity at a high temperature*, arXiv:1012.5461 (reviews various important but contradictory approaches) - A. Martín-Rodero and A. L. Yeyati,
*Josephson and Andreev transport through quantum dots*, Adv. Phys.**60**, 899 (2011)**P** - A. S. Alexandrov,
*High Temperature Superconductivity: the explanation*, arXiv:1102.2082, Physica Scripta - Z.-Y. Weng,
*Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity*, arXiv:1110.0546 - E. Babaev, J. Carlstrom, J. Garaud, M. Silaev, and J. M. Speight,
*Type-1.5 superconductivity in multiband systems: magnetic response, broken symmetries and microscopic theory. A brief overview*, arXiv:1110.2744 - O. Narikiyo,
*A Diagrammer's Note on Superconducting Fluctuation Transport for Beginners: I. Conductivity and Thermopower*, arXiv:1112.1513;*A Diagrammer's Note on Superconducting Fluctuation Transport for Beginners: II. Hall and Nernst Effects with Perturbational Treatment of Magnetic Field*, arXiv:1203.0127 - M. Vojta,
*Stripes and electronic quasiparticles in the pseudogap state of cuprate superconductors*, arXiv:1202.1913 - S. Sachdev, M. A. Metlitski, and M. Punk,
*Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials*, arXiv:1202.4760 - S. Maiti and A. V. Chubukov,
*Superconductivity from repulsive interaction*, arXiv:1305.4609 (extensive) - E. Fradkin, S. A. Kivelson, and J. M. Tranquada,
*Theory of intertwined orders in high temperature superconductors*, Rev. Mod. Phys.**87**, 457 (2015)

- S. Ryu, A. Schnyder, A. Furusaki, and A. Ludwig,
*Topological insulators and superconductors: ten-fold way and dimensional hierarchy*, New J. Phys.**12**, 065010 (2010) (extensive review of the ten generic Hamiltonian symmetry classes and the possibility of non-trivial topological [surface] states) - M. Z. Hasan and C. L. Kane,
*Topological Insulators*, arXiv:1002.3895, Rev. Mod. Phys.**82**, 3045 (2010) - M. Stone, C.-K. Chiu, and A. Roy,
*Symmetries, Dimensions, and Topological Insulators: the mechanism behind the face of the Bott clock*, arXiv:1005.3213 - E. Prodan,
*Disordered Topological Insulators: A Non-Commutative Geometry Perspective*, arXiv:1010.0595 - M. Z. Hasan and J. E. Moore,
*Three-Dimensional Topological Insulators*, arXiv:1011.5462 (from free electrons to strongly correlated systems); M. Z. Hasan, D. Hsieh, Y. Xia, L. A. Wray, S.-Y. Xu, and C. L. Kane,*A new experimental approach for the exploration of topological quantum phenomena: Topological Insulators and Superconductors*, arXiv:1105.0396 (focus on ARPES) - X.-L. Qi and S.-C. Zhang,
*Topological insulators and superconductors*, Rev. Mod. Phys.**83**, 1057 (2011) - Y. Tanaka, M. Sato, and N. Nagaosa,
*Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -*, arXiv:1105.4700, J. Phys. Soc. Jpn.**81**, 011013 (2012) - G. A. Fiete, V. Chua, X. Hu, M. Kargarian, R. Lundgren, A. Ruegg, J. Wen,
and V. Zyuzin,
*Topological Insulators and Quantum Spin Liquids*, arXiv:1106.0013 - G. P. Alexander, B. Gin-ge Chen, E. A. Matsumoto, and R. D. Kamien,
*Disclination Loops, Hedgehogs, and All That*, arXiv:1107.1169 - D. Culcer,
*Transport in three-dimensional topological insulators: theory and experiment*, arXiv:1108.3076, Physica E (transport in surface states, theoretical and experimental review) - Y. Barlas, K. Yang, and A. H. MacDonald,
*Quantum Hall Effects in Graphene-Based Two-Dimensional Electron Systems*, arXiv:1110.1069 - G. E. Volovik,
*Topology of quantum vacuum*, arXiv:1111.4627, Como summer school (analogies between the vacuum of the standard model and topological insulators and superconductors, emergence of gravity and gauge fields) - T. Kitagawa,
*Topological phenomena in quantum walks; elementary introduction to the physics of topological phases*, arXiv:1112.1882 - C. W. J. Beenakker,
*Search for Majorana fermions in superconductors*, arXiv:1112.1950, Ann. Rev. Condensed Matter Phys.**P** - Y. Okuda and R. Nomura,
*Surface Andreev bound states of superfluid*, J. Phys.: Condens. Matter^{3}He and Majorana fermions**24**, 343201 (2012) - J. Alicea,
*New directions in the pursuit of Majorana fermions in solid state systems*, arXiv:1202.1293 (topological superconductivity due to proximity effect) - M. Leijnse and K. Flensberg,
*Introduction to topological superconductivity and Majorana fermions*, arXiv:1206.1736 (pedagogical review, focus on 1D) - G. Tkachov and E. M. Hankiewicz,
*Spin-helical transport in normal and superconducting topological insulators*, arXiv:1208.1466 (2D and 3D AII topological insulators) - L. Müchler, F. Casper, B. Yan, S. Chadov, and C. Felser,
*Topological insulators and thermoelectric materials*, arXiv:1209.6097 - H. Zhang and S.-C. Zhang,
*Topological insulators from the Perspective of first-principles calculations*, arXiv:1209.6446 (class AII) - X.-G. Wen,
*Topological order: from long-range entangled quantum matter to an unification of light and electrons*, arXiv:1210.1281 (topological order as opposed to local symmetry breaking, light and electrons as emergent quasiparticles of a topologically ordered state)**P** - J. C. Budich and B. Trauzettel,
*From the adiabatic theorem of quantum mechanics to topological states of matter*, arXiv:1210.6672 (review on ten-fold-way classification)**P** - W. Feng and Y. Yao,
*Three-dimensional topological insulators: A review on host materials*, arXiv:1212.0602 - T. Grover, Y. Zhang, and A. Vishwanath,
*Entanglement entropy as a portal to the physics of quantum spin liquids*, New J. Phys.**15**, 025002 (2013) - M. Hohenadler and F. F. Assaad,
*Correlation effects in two-dimensional topological insulators*, J. Phys.: Condens. Matter**25**, 143201 (2013), (Haldane, Kane-Mele, Kane-Mele-Hubbard models) - A. M. Turner and A. Vishwanath,
*Beyond Band Insulators: Topology of Semi-metals and Interacting Phases*, arXiv:1301.0330 (1. topological states that are gapless in the bulk: mainly discuss Weyl semimetals and their topological protection by an invariant defined on a lower-dimensional manifold, list candidate materials, also mention nodal superconductors; 2. strongly interacting topological states) - T. D. Stanescu and S. Tewari,
*Majorana Fermions in Semiconductor Nanowires: Fundamentals, Modeling, and Experiment*, arXiv:1302.5433 - S. A. Parameswaran, R. Roy, and S. L. Sondhi,
*Fractional Quantum Hall Physics in Topological Flat Bands*, arXiv:1302.6606 - Y. Ando,
*Topological Insulator Materials*, arXiv:1304.5693 - O. Vafek and A. Vishwanath,
*Dirac Fermions in Solids - from High Tc cuprates and Graphene to Topological Insulators and Weyl Semimetals*, arXiv:1306.2272 - A. P. Schnyder and P. M. R. Brydon,
*Topological surface states in nodal superconductors*, arXiv:1502.03746 - J. Maciejko and G. A. Fiete,
*Fractionalized topological insulators*, Nature Phys.**11**, 385 (2015)**P** - J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, W. Wang, R. J. Cava, N.
P. Ong,
*Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field*, arXiv:1503.08179 (write-up of invited talk, mainly experimental perspective) - C. W. J. Beenakker,
*Random-matrix theory of Majorana fermions and topological superconductors*, Rev. Mod. Phys.**87**, 1037 (2015) (starts with an introduction to noninteracting topological systems) - A. Bansil, H. Lin, and T. Das,
*Colloquium: Topological band theory*, Rev. Mod. Phys.**88**, 021004 (2016) (based on DFT, close to specific materials) *Topological matter*(focus issue) Nature Phys.**12**(7), 615 (2016) (mainly focuses on non-electronic systems)- N. Goldman, J. C. Budich and P. Zoller,
*Topological quantum matter with ultracold gases in optical lattices*, Nature Phys.**12**, 639 (2016) - E. Witten,
*Fermion path integrals and topological phases*, Rev. Mod. Phys.**88**, 035001 (2016) (symmetry-protected fermionic phases, relation to Atiyah-Singer index theorem and &theta term, focus on 2D and 3D topological insulators) - C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
*Classification of topological quantum matter with symmetries*, Rev. Mod. Phys.**88**, 035005 (2016) (extensive, partially pedagogical introduction; mainly on effectively noninteracting models, covers gapped and nodal systems and also gapless states at surfaces and topological defects)

- A. Gezerlis and J. Carlson,
*Terrestrial and Astrophysical Superfluidity: Cold Atoms and Neutron Matter*, arXiv:1109.4946 (applied to neutron-star crusts) - K. Levin and R. G. Hulet,
*The Fermi Gases and Superfluids: Short Review of Experiment and Theory for Condensed Matter Physicists*, arXiv:1202.2146 - E. Varoquaux,
*Anderson's considerations on the flow of superfluid helium: Some offshoots*, Rev. Mod. Phys.**87**, 803 (2015)

- V. V. Brazhkin,
*High-Pressure Synthesized Materials: a Chest of Treasure and Hints*, cond-mat/0605626 - M. I. Katsnelson,
*Graphene: carbon in two dimensions*, cond-mat/0612534, slightly longer version in: Materials Today**10**, 20 (2007) - A. J. Masters,
*Virial expansions*, J. Phys.: Condens. Matter**20**, 283102 (2008) (applied to isotropic fluids and liquid crystals) - A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.
K. Geim,
*The electronic properties of graphene*, Rev. Mod. Phys.**81**, 109 (2009) - G. Malenkov,
*Liquid water and ices: understanding the structure and physical properties*, J. Phys.: Condens. Matter**21**, 283101 (2009) *Graphene*(special section), J. Phys.: Condens. Matter**21**, issue 34 (2009)- J. Moore,
*Solid-state physics: An insulator's metallic side*, Nature**460**, 1090 (2009) and papers discussed therein (short "News and Views" with concise introduction to topological insulators) - A. K. Geim,
*Graphene: Status and Prospects*, arXiv:0906.3799 - A. R. Oganov and V. L. Solozhenko,
*Boron: a Hunt for Superhard Polymorphs*, arXiv:0911.3193 (short review of the history of elementary boron up to the present) - L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and
J. van den Brink,
*Resonant Inelastic X-ray Scattering Studies of Elementary Excitations*, arXiv:1009.3630 (experimental and theoretical review on RIXS) - J. E. Drut, T. A. Lähde, and E. Tölö,
*Graphene: from materials science to particle physics*, arXiv:1011.0643 (discuss, among other things, the nearby excitonic instability) - W. A. de Heer,
*The Development of Epitaxial Graphene For 21st Century Electronics*, arXiv:1012.1644 (... with a focus on work done by the Georgia Tech group; contains a very interesting history of graphene before Geim and Novoselov) - R. Resta,
*The Insulating State of Matter: A Geometrical Theory*, arXiv:1012.5776 - F. Molitor, J. Guttinger, C. Stampfer, S. Droscher, A. Jacobsen, T. Ihn,
and K. Ensslin,
*Electronic properties of graphene nanostructures*, J. Phys.: Condens. Matter**23**, 243201 (2011) - B. Uchoa, J. P. Reed, Y. Gan, Y. I. Joe, D. Casa, E. Fradkin, and P.
Abbamonte,
*The electron many-body problem in graphene*, arXiv:1109.1577 - H. Essen and M. C. N. Fiolhais,
*Meissner effect, diamagnetism, and classical physics - a review*, arXiv:1109.1968 (review of arguments against the Bohr-von Leeuwen theorem and against Meissner's assertion that the Meissner-Ochsenfeld effect cannot be understood classically) - N. Nagaosa and Y. Tokura,
*Emergent electromagnetism in solids*, arXiv:1109.4720 - D. R. Cooper
*et al.*,*Experimental review of graphene*, arXiv:1110.6557 - R. Lifshitz,
*Symmetry Breaking and Order in the Age of Quasicrystals*, arXiv:1111.3004 - T. Bartels-Rausch
*et al.*,*Ice structures, patterns, and processes: A view across the icefields*, Rev. Mod. Phys.**84**, 885 (2012) (broad review of water ice, including phase diagram and structures, lattice defects, glassy ice, sea ice, ice in the Earth's atmosphere, in the solar system, and in interstellar space) - V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto,
*Electron-Electron Interactions in Graphene: Current Status and Perspectives*, Rev. Mod. Phys.**84**, 1067 (2012) - K. Hyeon-Deuk and O. V. Prezhdo,
*Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination*, J. Phys.: Condens. Matter**24**, 363201 (2012) - R. Comin and A. Damascelli,
*ARPES: A probe of electronic correlations*, arXiv:1303.1438, in Strongly Correlated Systems: Experimental Techniques, Springer Series in Solid-State Sciences (2013) - A. G. Green,
*An Introduction to Gauge Gravity Duality and Its Application in Condensed Matter*, arXiv:1304.5908 (introductory review) - V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S. Dresselhaus,
*Physical properties of low-dimensional sp2-based carbon nanostructures*, Rev. Mod. Phys.**88**, 025005 (2016) (graphene, nanotubes, also with edges)

- W. R. Browne and B. L. Feringa,
*Light Switching of Molecules on Surfaces*, Annu. Rev. Phys. Chem.**60**, 407 (2009)

- Z. Nussinov, C. D. Batista, and E. Fradkin,
*Intermediate Symmetries In Electronic Systems: Dimensional Reduction, Order Out Of Disorder, Dualities, And Fractionalization*, cond-mat/0602569 (also contains introduction to local gauge symmetry) - B. Schroer,
*String theory deconstructed (a detailed critique of the content of ST from an advanced QFT viewpoint)*, hep-th/0611132, dedicated to Philip Anderson on the occasion of his 83rd birthday - S. A. Hartnoll,
*Lectures on holographic methods for condensed matter physics*, arXiv:0903.3246 (starting with an introduction to the anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence; compare following reference) - J. McGreevy,
*Holographic duality with a view toward many-body physics*, arXiv:0909.0518 (lectures introducing the AdS/CFT correspondence; compare previous reference) - N. Turok,
*Particle physics: Beyond Feynman's diagrams*, Nature**469**, 165 (2011) (short News & Views article on recent trends)

- D. Aharonov,
*Quantum Computation*, quant-ph/9812037, Annual Reviews of Computational Physics, vol. VI (World Scientific, 1998) (extensive review, includes clear discussions of the underlying concepts in theoretical computer science and of quantum algorithms) - J. Tao, X. Gao, G. Vignale, and I. V. Tokatly,
*Linear Continuum Mechanics for Quantum Many-Body Systems*, Phys. Rev. Lett.**103**, 086401 (2009); S. Pittalis, G. Vignale, and I. V. Tokatly,*Quantum continuum mechanics in a strong magnetic field*, arXiv:1109.3644 - S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf,
*Circuit QED and engineering charge based superconducting qubits*, arXiv:0912.3902, Phys. Scr. T**137**, 014012 (2009) - A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J.
Schoelkopf,
*Introduction to quantum noise, measurement and amplification*, Rev. Mod. Phys.**82**, 1155 (2010), arXiv version with*additional appendices*: arXiv:0810.4729 (extensive, partly pedagogical review) - J.-S. Caux and J. Mossel,
*Remarks on the notion of quantum integrability*, arXiv:1012.3587 (very useful review and discussion of various formulations of integrability, including failing ones) - M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, A. Aspuru-Guzik,
*Introduction to Quantum Algorithms for Physics and Chemistry*, arXiv:1203.1331 - C. Kloeffel and D. Loss,
*Prospects for Spin-Based Quantum Computing*, arXiv:1204.5917 - N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,
*Bell nonlocality*, Rev. Mod. Phys.**86**, 419 (2014) - X.-s. Ma, J. Kofler, and A. Zeilinger,
*Delayed-choice gedanken experiments and their realizations*, Rev. Mod. Phys.**88**, 015005 (2016) (includes historical review)

- S. R. Finch,
*Several Constants Arising in Statistical Mechanics*, math.CO/9810155**!** - B. M. McCoy,
*The 1999 Heineman Prize Address, Integrable models in statistical mechanics: The hidden field with unsolved problems*, math-ph/9904003 - T. Senthil, A. Vishwanath, L. Balents, S. Sachdev,
M. P. A. Fisher,
*'Deconfined' quantum critical points*, cond-mat/0311326; T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, M. P. A. Fisher,*Deconfined criticality critically defined*, cond-mat/0404718 - R. J. Baxter,
*The challenge of the chiral Potts model*, cond-mat/0510683 - K. J. Wiese,
*Why one needs a functional renormalization group to survive in a disordered world*, cond-mat/0511529, Pramana**64**, 817 (2005) (dimensional-reduction theorem and its failure, relation to replica-symmetry breaking) - R. Kenna,
*The XY Model and the Berezinskii-Kosterlitz-Thouless Phase Transition*, cond-mat/0512356 (review on recent progress, subtleties due to logarithmic corrections) - V. N. Plechko,
*Fermions and Correlations in the Two-Dimensional Ising Model*, hep-th/0512263 (mapping onto Majorana fermions etc.) - G. E. Volovik,
*Quantum phase transitions from topology in momentum space*, cond-mat/0601372 (Classification of QPT's according to codimension of set of zeroes of fermionic spectrum, many insightful remarks) - T. Vojta,
*Rare region effects at classical, quantum, and non-equilibrium phase transitions*, cond-mat/0602312 (Griffiths singularities etc.) - R. Kenna,
*Homotopy in statistical physics*, cond-mat/0602459, Cond. Matt. Phys. (includes an introduction to the relevant mathematics) - M. Gell-Mann and J. Hartle,
*Quasiclassical Coarse Graining and Thermodynamic Entropy*, quant-ph/0609190 *Chemical Kinetics beyond the Textbook: Flucutations, Many-Particle Effects and Anomalous Dynamics*, J. Phys.: Condens. Matter**19**(6) (special issue with many articles highlighting different aspects)- S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
*Critical phenomena in complex networks*, arXiv:0705.0010 - R. A. Blythe and M. R. Evans,
*Nonequilibrium Steady States of Matrix Product Form: A Solver's Guide*, arXiv:0706.1678 - K. Huang,
*Protein Folding as a Physical Stochastic Process*, arXiv:0707.2388 - L. M. Martyushev,
*Do Nonequilibrium Processes Have Features in Common?*, arXiv:0709.0152 (short note) - C. Vega, E. Sanz, J. L. F. Abascal, and E. G. Noya,
*Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins*, J. Phys.: Condens. Matter**20**, 153101 (2008) - R. Frigg,
*A Field Guide to Recent Work on the Foundations of Statistical Mechanics*, arXiv:0804.0399 - D. Mukamel,
*Statistical Mechanics of systems with long range interactions*, arXiv:0811.3120 - A. L. Kuzemsky,
*Bogoliubov's vision: quasiaverages and broken symmetry to quantum protectorate and emergence*, Int. J. Mod. Phys. B**24**, 835 (2010) - S. Ramaswamy,
*The Mechanics and Statistics of Active Matter*, arXiv:1004.1933, Ann. Rev. Condens. Matter Phys. (2010) - Z. Burda, J. Duda, J. M. Luck, and B. Waclaw,
*The various facets of random walk entropy*, arXiv:1004.3667 (random walks on graphs) - T. Vojta,
*Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment*, arXiv:1005.2707 - R. J. Baxter,
*Some comments on developments in exact solutions in statistical mechanics since 1944*, arXiv:1010.0710 - L. P. Kadanoff,
*Relating Theories via Renormalization*, arXiv:1102.3705 (historical overview) - N. Singh,
*How and why does statistical mechanics work*, arXiv:1103.4003 (concise critical review; ergodicity, chaos, statistial independence) - B. Vanderheyden and A. D. Jackson,
*Random matrix models for phase diagrams*, arXiv:1105.1291 (illustrated for QCD and high-*T*materials)_{c} - T. Chou, K. Mallick, and R. K. P. Zia,
*Non-equilibrium statistical mechanics: From a paradigmatic model to biological transport*, arXiv:1110.1783, Rep. Prog. Phys. (long review on Markov processes and the Pauli master equation, contains detailed analysis of the totally asymmetric exclusion process including Bethe-ansatz approach, also discusses biomolecular applications) - R. E. Spinney and I. J. Ford,
*Fluctuation relations: a pedagogical overview*, arXiv:1201.6381 - C. Xu,
*Unconventional Quantum Critical Points*, arXiv:1202.6065 (topological transitions and direct second-order transitions between competing orders) - H.-P. Breuer,
*Foundations and Measures of Quantum Non-Markovianity*, arXiv:1206.5346 - N. Gray, D. Minic, and M. Pleimling,
*On non-equilibrium physics and string theory*, arXiv:1301.6368 - Z. Nussinov and J. van den Brink,
*Compass and Kitaev models - Theory and Physical Motivations*, arXiv:1303.5922 - E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff,
*Real-space renormalization in statistical mechanics*, Rev. Mod. Phys.**86**, 647 (2014) - C. Jarzynski,
*Diverse phenomena, common themes*, Nature Phys.**11**, 105 (2015) and references therein, published in the same issue, on nonequilibrium statistical physics; P. Hänggi and P. Talkner,*The other QFT*, Nature Phys.**11**, 108 (2015) (review on fluctuation theorems for nonequilibrium systems); J. Eisert, M. Friesdorf, and C. Gogolin,*Quantum many-body systems out of equilibrium*, Nature Phys.**11**, 124 (2015) (review on self-thermalization of closed systems) - L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim,
*Macroscopic fluctuation theory*, Rev. Mod. Phys.**87**, 593 (2015) (review of this proposed theory of stationary nonequilibrium states) - H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini,
*Colloquium: Non-Markovian dynamics in open quantum systems*, Rev. Mod. Phys.**88**, 021002 (2016) (master equation)

- P. Carruthers and F. Zachariasen,
*Quantum collision theory with phase-space distributions*, Rev. Mod. Phys.**55**, 245 (1983) (Wigner-function approach) - A. M. J. Schakel,
*Time-Dependent Ginzburg-Landau Theory and Duality*, cond-mat/9904092 (discussing BCS and BEC limits and duality) - B. Mashhoon, F. Gronwald, and H. I. M. Lichtenegger,
*Gravitomagnetism and the Clock Effect*, gr-qc/9912027 (gravitoelectromagnetic field, approximate derivation from GTR) - A. Unzicker,
*What can Physics learn from Continuum Mechanics?*, gr-qc/0011064 (topological defects, continuum mechanics, spacetime, and Einstein's teleparallel theory) - G. E. Volovik,
*The Universe in a Helium Droplet*(Clarendon Press, Oxford, 2003), http://ltl.tkk.fi/personnel/THEORY/volovik/book.pdf (book, common concepts in cosmology and condensed-matter theory); G. E. Volovik,*Emergent physics on vacuum energy and cosmological constant*, cond-mat/0507454 (ideas common to cosmology and condensed-matter theory), see also below (2010) - C. M. Bender,
*Making Sense of Non-Hermitian Hamiltonians*, hep-th/0703096, Rep. Prog. Phys. (extensive review with lots of interesting details)**!** - B. Duplantier,
*Brownian Motion, "Diverse and Undulating"*, arXiv:0705.1951, expanded version of article in*Einstein, 1905-2005*, Poincaré Seminar 2005, edited by T. Damour, O. Darrigol, B. Duplantier, and V. Rivasseau, p. 201 (Birkhäuser, Basel, 2006) (extended historical review, also discussing mathematical aspects) - D. Chowdhury,
*Resource Letter: Bio-molecular Nano-machines: where Physics, Chemistry, Biology and Technology meet*, arXiv:0807.2731 (extensive review) - D. V. Shirkov,
*60 years of Broken Symmetries in Quantum Physics (From the Bogoliubov Theory of Superfluidity to the Standard Model)*, arXiv:0903.3194 - D. Sherrington,
*Physics and Complexity*, arXiv:0903.3572, Phil. Mag. A (macroscopic complexity arising from simple microscopic properties) - S. Fortunato,
*Community detection in graphs*, arXiv:0906.0612 - H. J. Haubold, A. M. Mathai, and R. K. Saxena,
*Mittag-Leffler Functions and Their Applications*, arXiv:0909.0230 - G. E. Volovik,
*The Superfluid Universe*, arXiv:1004.0597 (the quantum vacuum, cosmology, and liquid Helium-3, based on considerations of thermodynamics, topology and symmetry)**P** - F. Wilczek,
*BCS as Foundation and Inspiration: The Transmutation of Symmetry*, arXiv:1008.1741 (developments in general physics inspired by BCS theory) - N. Goldenfeld and C. Woese,
*Life is physics: evolution as a collective phenomenon far from equilibrium*, arXiv:1011.4125 - D. Schumayer and D. A. W. Hutchinson,
*Colloquium: Physics of the Riemann hypothesis*, Rev. Mod. Phys.**83**, 307 (2011) (review on the Riemann zeta function from the perspective of physics) - N. Auerbach and V. Zelevinsky,
*Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems*, arXiv:1104.5462 - D. Blume,
*Few-body physics with ultracold atomic and molecular systems in traps*, arXiv:1111.0941 - R. Chiao,
*Superluminal phase and group velocities: A tutorial on Sommerfeld's phase, group, and front velocities for wave motion in a medium, with applications to the "instantaneous superluminality" of electrons*, arXiv:1111.2402 - D. J. Rowe, M. J. Carvalho, and J. Repka,
*Dual pairing of symmetry and dynamical groups in physics*, Rev. Mod. Phys.**84**, 711 (2012) (as applied to quantum many-body theory) *Physics in one dimension*(special section), J. Phys.: Condens. Matter**25**, 010301 (2013)- R. E. Allen,
*The London-Anderson-Englert-Brout-Higgs-Guralnik-Hagen-Kibble-Weinberg mechanism and Higgs boson reveal the unity and future excitement of physics*, arXiv:1306.4061 (history of the the named mechanism and implications for future research) - M. Cariglia,
*Hidden symmetries of dynamics in classical and quantum physics*, Rev. Mod. Phys.**86**, 1283 (2014) (rather mathematical presentation with many examples, including tops and the Runge-Lenz vector) - S. R. Elliott and M. Franz,
*Colloquium: Majorana fermions in nuclear, particle, and solid-state physics*, Rev. Mod. Phys.**87**, 137 (2015) (theoretical and experimental overview)

- S. Torquato and F. H. Stillinger,
*Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond*, arXiv:1008.2982, Rev. Mod. Phys. (2010)

- J. Schmalian,
*Failed theories of superconductivity*, arXiv:1008.0447

- W. Kohn and J. M. Luttinger,
*Quantum Theory of Electrical Transport Phenomena*, Phys. Rev.**108**, 590 (1957) (Boltzmann equation with collision integral derived from master equation) - B. Velický, S. Kirkpatrick, and H. Ehrenreich,
*Single-Site Approximations in the Electronic Theory of Simple Binary Alloys*, Phys. Rev.**175**, 747 (1968) (detailed, partly pedagogical discussion of the CPA) - A. H. MacDonald, S. M. Girvin, and D. Yoshioka,
*t/U expansion for the Hubbard model*, Phys. Rev. B**37**, 9753 (1988) (unitary transformation that removes terms that change the number of doubly occupied sites to*any*order)**P**; A. M. Oles,*Comment*, Phys. Rev. B**41**, 2562 (1990); A. H. MacDonald, S. M. Girvin, and D. Yoshioka,*Reply*, Phys. Rev. B**41**, 2565 (1990) - D. N. Aristov,
*Indirect RKKY interaction in any dimensionality*, Phys. Rev. B**55**, 8064 (1997) - D. Belitz and T. R. Kirkpatrick,
*Theory of many-fermion systems*, Phys. Rev. B**56**, 6513 (1997) (continuum many-fermion theory including potential disorder and interactions, uses bosonization, the replica trick, and saddle-point expansion, long paper) - Y. B. Ivanov, J. Knoll, and D. N. Voskresensky,
*Self-Consistent Approximations to Non-Equilibrium Many-Body Theory*, cond-mat/9807351 (generalization of Kadanoff-Baym approach with non-equilibrium Green functions) - E. Lange,
*Renormalized vs. unrenormalized perturbation-theoretical approaches to the Mott transition*, cond-mat/9810208, Mod. Phys. Lett. B**12**, 915 (1998) (why unrenormalized perturbation theory often works better) - A. Hübsch, M. Vojta, and K. W. Becker,
*Construction of size-consistent effective Hamiltonians for systems with arbitrary Hilbert space*, J. Phys.: Condens. Matter**11**, 8523 (1999), cond-mat/9909317 - D. Foerster,
*A planar diagram approach to the correlation problem*, cond-mat/9912350 (large-*N*functional integral method for the Hubbard model based on an idea from QCD, nicely written, relation to FLEX) - R. Renan, M. H. Pacheco, and C. A. S. Almeida,
*Treating some solid state problems with the Dirac equation*, J. Phys. A: Math. Gen.**33**, L509 (2000) (effective mass treatment of semiconductor heterostructures, how to use Dirac equation to derive it correctly) - C. D. Batista and G. Ortiz,
*Generalized Jordan-Wigner Transformations*, Phys. Rev. Lett.**86**, 1082 (2001) - R. Frésard and T. Kopp,
*Slave Bosons in Radial Gauge: the Correct Functional Integral Representation and Inclusion of Non-Local Interactions*, Nucl. Phys. B**594**, 769 (2001), cond-mat/0011296 (how to gauge away all phase fluctuations of slave bosons by making the Lagrange-multiplier fields dynamic); R. Frésard, H. Ouerdane, and T. Kopp,*Slave bosons in radial gauge: A bridge between path integral and Hamiltonian language*, Nucl. Phys. B**785**, 286 (2007) (also illustrating this path-integral/Hamiltonian correspondence for simple model systems);*Barnes slave-boson approach to the two-site single-impurity Anderson model with non-local interaction*, EPL**82**, 31001 (2008) - N. Dupuis,
*A new approach to strongly correlated fermion systems: the spin-particle-hole coherent-state path integral*, cond-mat/0105062 - Y. Kakehashi,
*Many-body coherent potential approximation, dynamical coherent potential approximation, and dynamical mean-field theory*, Phys. Rev. B**66**, 104428 (2002) (shows that many-body CPA, dynamical CPA, and DMFT are equivalent, gives results for disordered Hubbard model) - V. Gurarie and J. T. Chalker,
*Some Generic Aspects of Bosonic Excitations in Disordered Systems*, Phys. Rev. Lett.**89**, 136801 (2002) - S. Sharma and C. Ambrosch-Draxl,
*Linear and Second-order Optical Response from First Principles*, cond-mat/0305016 (in the independent particle approximation) - M. Potthoff,
*Self-energy-functional approach: Analytical results and the Mott-Hubbard transition*, cond-mat/0306278 - E. Langmann,
*Exactly solvable models for 2D interacting fermions*, J. Phys. A: Math. Gen.**37**, 407 (2004) cond-mat/0206045 - M. Potthoff,
*Non-perturbative construction of the Luttinger-Ward functional*, cond-mat/0406671 - M. S. Laad and L. Craco,
*Cluster coherent potential approximation for the electronic structure of disordered alloys*, J. Phys.: Condens. Matter**17**, 4765 (2005) (generalization of CPA to include non-local correlations) - F. Verstraete and J. I. Cirac,
*Mapping local Hamiltonians of fermions to local Hamiltonians of spins*, cond-mat/0508353 - A. Rüegg, M. Indergand, S. Pilgram, and M. Sigrist,
*Slave-boson theory of the Mott transition in the two-band Hubbard model*, cond-mat/0508691 - K. R. Patton and M. R. Geller,
*Infrared catastrophe and tunneling into strongly correlated electron systems: Beyond the x-ray edge limit*, cond-mat/0509617 - V. Cvetkovic and J. Zaanen,
*Vortex duality: watching the dual side with order propagators*, cond-mat/0511586 - U. Birkenheuer, P. Fulde, and H. Stoll,
*A simplified method for the computation of correlation effects on the band structure of semiconductors*, cond-mat/0511626 - G. Vidal,
*Entanglement renormalization*, cond-mat/0512165 (improved real-space RG procedure that includes an additional transformation reducing the entanglement between blocks) - M. Berciu,
*Green's function of a dressed particle*, cond-mat/0602195 (obtains an approximate full Green function by summing over*all*diagrams but averaging over the momenta of internal propagators, i.e., neglecting momentum conservation; shown to give good results for the Holstein model); G. L. Goodvin, M. Berciu, and G. A. Sawatzky,*The Green's Function of the Holstein Polaron*, cond-mat/0609597 - A. Toschi, A. A. Katanin, and K. Held,
*Dynamical vertex approximation - a step beyond dynamical mean field theory*, cond-mat/0603100 - D. A. Rowlands,
*Investigation of the nonlocal coherent-potential approximation*, cond-mat/0603370, J. Phys.: Condens. Matter**18**, 3179 (2006) - P. Gosselin, A. Bérard, and H. Mohrbach,
*Semiclassical Diagonalization of Quantum Hamiltonian and Equations of Motion with Berry Phase Corrections*, hep-th/0603192 - P. Werner and A. J. Millis,
*Strong Coupling Continuous Time Impurity Solver: General Formulation and Application to Kondo Lattice and Two-Orbital Models*, cond-mat/0607136 - S. Ostlund,
*The strong coupling Kondo lattice model as a Fermi gas*, cond-mat/0703768 (exact mapping) - M. Greiter and D. Schuricht,
*Many-spinon states and the secret significance of Young tableaux*, arXiv:0705.1467 - M. B. Hastings,
*Quantum Belief Propagation*, arXiv:0706.4094 - F. Mancini,
*A class of solvable models in Condensed Matter Physics*, arXiv:0707.3839, Condens. Matter Phys.**9**, 393 (2006) (model with general multi-particle density interactions, but without kinetic energy) - B. Sutherland,
*The Structure of Integrable One-Dimensional Systems*, arXiv:0708.0334 (relation of classical notion of integrable systems to the Bethe ansatz for the corresponding quantum system) - M. Balzer, W. Hanke, and M. Potthoff,
*Mott transition in one dimension: Benchmarking dynamical cluster approaches*, arXiv:0709.4620 (comparison with various other methods) - V. A. Apinyan and T. K. Kopec,
*Effective pairing interaction in the two-dimensional Hubbard model within a spin rotationally invariant approach*, Phys. Rev. B 78, 184511 (2008) - J. Zaanen, F. Krüger, J.-H. She, D. Sadri, and S. I. Mukhin,
*Pacifying the Fermi-liquid: battling the devious fermion signs*, arXiv:0802.2455 (fermionic path integral, includes review) - J. Brinckmann and P. Wölfle,
*Diagrammatic approximations for the 2d quantum antiferromagnet: exact projection of auxiliary fermions*, arXiv:0803.3312 (projection to implement local constraint on auxiliary-fermion number, exact projection compared to projection of average) - J. P. Coe, K. Capelle, and I. D'Amico,
*Reverse engineering in many-body quantum physics: What many-body system corresponds to an effective single-particle equation?*, arXiv:0809.0586 - A. Hackl and S. Kehrein,
*Unitary perturbation theory approach to real-time evolution problems*, arXiv:0809.3524 - H. Mukaida and Y. Sakamoto,
*Exactness of the replica method in perturbation*, arXiv:0809.4071 - A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A. Georges,
*Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs*, arXiv:0810.3819 - D. Belitz and T. R. Kirkpatrick,
*Electronic Transport at Low Temperatures: Diagrammatic Approach*, arXiv:0812.0024 (conserving ladder approximation for the Kubo formula is consistent with result from Boltzmann equation) - Z. Nussinov and G. Ortiz,
*Bond Algebras and Exact Solvability of Hamiltonians: Spin S=1/2 Multilayer Systems and Other Curiosities*, arXiv:0812.4309 (how to construct models with exactly known spectra) - S. N. Datta and A. Panda,
*All-temperature magnon theory of ferromagnetism*, J. Phys.: Condens. Matter**21**, 336003 (2009) - Z.-C. Gu and X.-G. Wen,
*Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order*, Phys. Rev. B**80**, 155131 (2009); see also Viewpoint: S. Sachdev,*Tensor networks - a new tool for old problems*, Physics**2**, 90 (2009) - S. G. Jakobs, M. Pletyukhov, and H. Schoeller,
*Properties of multi-particle Green and vertex functions within Keldysh formalism*, arXiv:0902.2350 - A. Benlagra, K.-S. Kim, and C. Péepin,
*Luttinger-Ward functional approach in the Eliashberg framework : A systematic derivation of scaling for thermodynamics near a quantum critical point*, arXiv:0902.3630 - M. Dunn, W. Blake Laing, D. Toth, and D. K. Watson,
*A Test of a New Interacting N-Body Wave Function*, arXiv:0903.0875 - A. Croy and U. Saalmann,
*A partial fraction decomposition of the Fermi function*, arXiv:0903.4824 (which converges much more rapidly than the Matsubara sum) - K. B. Efetov, C. Pepin, and H. Meier,
*Exact bosonization for an interacting Fermi gas in arbitrary dimensions*, arXiv:0907.3243 (said to avoid the sign problem) - P. Werner and A. J. Millis,
*Dynamical Screening in Correlated Electron Materials*, arXiv:1001.1377 (screening of the Hubbard-*U*interaction) - J. Eckel, F. Heidrich-Meisner, S. G. Jakobs, M. Thorwart, M. Pletyukhov,
and R. Egger,
*Comparative study of theoretical methods for nonequilibrium quantum transport*, arXiv:1001.3773 (compare FRG, time-dependent DMRG, and iterative summation of real-time path integrals) - J. Bünemann,
*A slave-boson mean-field theory for general multi-band Hubbard models*, arXiv:1002.3228 - F. Fröwis, V. Nebendahl, and W. Dür,
*Tensor operators - constructions and applications for long-range interaction systems*, arXiv:1003.1047 - P. Kopietz, L. Bartosch, L. Costa, A. Isidori, and A. Ferraz,
*Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group*, arXiv:1003.1867 - J. E. Moussa,
*Approximate diagonalization method for many-fermion Hamiltonians*, arXiv:1003.2596 - V. Galitski,
*Fermionization Transform for Certain Higher-Dimensional Quantum Spin Models*, arXiv:1003.3874 - Y.-F. Yang, N. J. Curro, Z. Fisk, D. Pines, and J. D. Thompson,
*A predictive standard model for heavy electron systems*, arXiv:1005.5184 - J. Jedrak, J. Kaczmarczyk, and J. Spalek,
*Statistically-consistent Gutzwiller approach and its equivalence with the mean-field slave-boson method for correlated systems*, arXiv:1008.0021 - C. Jung, A. Lieder, S. Brener, H. Hafermann, B. Baxevanis, A.
Chudnovskiy, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein,
*Dual-Fermion approach to Non-equilibrium strongly correlated problems*, arXiv:1011.3264 (dual perturbation theory on the Keldysh time contour) - T. Tay and O. I. Motrunich,
*Failure of Gutzwiller-type wave function to capture gauge fluctuations: Case study in the Exciton Bose Liquid context*, arXiv:1012.3783 (solution using a Gutzwiller-projected wave function is compared to a full slave-particle approach) - K. Edwards and A. C. Hewson,
*A new renormalization group approach for systems with strong electron correlation*, J. Phys.: Condens. Matter**23**, 045601 (2011) (RG as function of magnetic field, starting at high field, which suppresses spin fluctuations, and reducing the field to zero) - J. H. Wilson and V. Galitski,
*Breakdown of the Coherent State Path Integral: Two Simple Examples*, Phys. Rev. Lett.**106**, 110401 (2011) - S. M. Giampaolo, G. Gualdi, A. Monras, and F. Illuminati,
*Characterizing and Quantifying Frustration in Quantum Many-Body Systems*, Phys. Rev. Lett.**107**, 260602 (2011) - M. Balzer and M. Potthoff,
*Non-equilibrium cluster-perturbation theory*, arXiv:1102.3344 (on Keldysh contour) - R. van Leeuwen and G. Stefanucci,
*Wick Theorem for General Initial States*, arXiv:1102.4814 - P. Anders, E. Gull, L. Pollet, M. Troyer, and P. Werner,
*Dynamical mean-field theory for bosons*, arXiv:1103.0017 - A. Toschi, G. Rohringer, A. A. Katanin, and K. Held,
*Ab initio calculations with the dynamical vertex approximation*, arXiv:1104.2188 - H. Kleinert,
*Hubbard-Stratonovich Transformation: Successes, Failure, and Cure*, arXiv:1104.5161 (how to avoid
the problem of the HS transformation that one has to select one specific
decoupling channel)
- M. Weinstein, A. Auerbach, and V. R. Chandra,
*Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition*, arXiv:1105.0007 - R. Hübener and T. Barthel,
*Approaching condensed matter ground states from below*, arXiv:1106.4966 (method giving rigorous lower bound for ground-state energy) - E. von Oelsen, G. Seibold, and J. Bünemann,
*Time-Dependent Gutzwiller Theory for Multiband Hubbard Models*, arXiv:1107.1354;*The time-dependent Gutzwiller theory for multi-band Hubbard models*, arXiv:1107.1631 - V. Alba, M. Haque, and A. M. Laeuchli,
*Boundary-locality and perturbative structure of entanglement spectra in gapped systems*, arXiv:1107.1726 - V. V. Cheianov, I. L. Aleiner, and V. I. Fal'ko,
*Tunable Strongly Correlated Band Insulator*, arXiv:1107.4750 (... a new concept) - S. Chandrasekharan and U.-J. Wiese,
*Partition Functions of Strongly Correlated Electron Systems as "Fermionants"*, arXiv:1108.2461 (a new approach to the partition function of interacting systems) - J. Zaanen and A. J. Beekman,
*The emergence of gauge invariance: the stay-at-home gauge versus local-global duality*, arXiv:1108.2791 (starts with a review of relevant concepts) - B. Swingle and T. Senthil,
*A geometric proof of the equality between entanglement and edge spectra*, arXiv:1109.1283 - A. Ferraz and E. A. Kochetov,
*Effective action for strongly correlated electron systems*, arXiv:1109.5103 (path integral) - Z. Nussinov, G. Ortiz, and E. Cobanera,
*Effective and exact holographies from symmetries and dualities*, arXiv:1110.2179 (very long paper) - A. Dutta, C. Trefzger, and K. Sengupta,
*A projection operator approach to the Bose-Hubbard model*, arXiv:1111.5085 (for equilibrium and non-equilibrium cases) - M. Berciu,
*Few-particle Green's functions for strongly correlated systems on infinite lattices*, arXiv:1112.1928 - J. Rodriguez-Laguna, P. Migdal, M. Ibánez Berganza,
M. Lewenstein, and G. Sierra,
*Qubism: self-similar visualization of many-body wavefunctions*, arXiv:1112.3560**!** - C. Honerkamp,
*Effective interactions in multi-band systems from constrained summations*, arXiv:1112.5143 (constrained RPA and beyond) - D. Belitz and T. R. Kirkpatrick,
*Effective Soft-Mode Theory for Clean Fermions*, arXiv:1112.5916 - M. Balzer, N. Gdaniec, and M. Potthoff,
*Krylov-space approach to the equilibrium and nonequilibrium single-particle Green's function*, J. Phys.: Condens. Matter**24**, 035603 (2012) - T. R. Kirkpatrick and D. Belitz,
*Theory of a Fermi-Liquid to Non-Fermi-Liquid Quantum Phase Transition in Dimensions d>1*, Phys. Rev. Lett.**108**, 086404 (2012) (transition toward a Luttinger-liquid-like phase in higher dimensions; density of states at the Fermi energy is considered as order parameter) - K. Byczuk, J. Kunes, W. Hofstetter, and D. Vollhardt,
*Quantification of Correlations in Quantum Many-Particle Systems*, Phys. Rev. Lett.**108**, 087004 (2012) (measure of correlations based on density operator) - A. Akbari, M. J. Hashemi, R. M. Nieminen, R. van Leeuwen, and A. Rubio,
*Challenges in Truncating the Hierarchy of Time-Dependent Reduced Density Matrices Equations: Open Problems*, arXiv:1204.4395 (comprehensive paper on Born-Bologiubov-Green-Kirkwood-Yvon hierarchy of one-, two-, three-, etc. body reduced density matrices, in particular discuss truncated at third order) - G. Knizia and G. K.-L. Chan,
*Density matrix embedding: A simple alternative to dynamical mean-field theory*, arXiv:1204.5783 - S. N. Dinh, D. A. Bagrets, and A. D. Mirlin,
*Nonequilibrium functional bosonization of quantum wire networks*, arXiv:1205.3464 - P. Jacquod, R. S. Whitney, J. Meair, and M. Büttiker,
*Onsager Relations in Coupled Electric, Thermoelectric and Spin Transport: The Ten-Fold Way*, arXiv:1207.1629 (Onsager relations between uniform linear-response coefficients, for all 10 classes; also contains a nice discussion of physical examples for all Altland-Zirnbauer "ten-fold way" classes) - S. A. Maier and C. Honerkamp,
*Renormalization group flow for fermions into antiferromagnetically ordered phases: Method and mean-field models*, arXiv:1207.2314 - J. S. M. Anderson, M. Nakata, R. Igarashi, K. Fujisawa, and M. Yamashita,
*The second-order reduced density matrix method and the two-dimensional Hubbard model*, arXiv:1207.4847 - M. L. Leek,
*Mathematical Details in the application of Non-equilibrium Green's Functions (NEGF) and Quantum Kinetic Equations (QKE) to Thermal Transport*, arXiv:1207.6204 (very long thesis, including disussion of how Landauer theory, kinetic theory, and Kubo linear-response theory are derived in the general NEGF formalism) - B. Sriram Shastry,
*Extremely Correlated Fermi Liquids: The Formalism*, arXiv:1207.6826 - P. Wang,
*The excitation operator approach to non-Markovian dynamics of quantum impurity models in the Kondo regime*, arXiv:1209.3881 (dynamics of Kondo spin coupled to a single non-Markovian reservoir) - C. Aron, C. Weber, and G. Kotliar,
*Impurity model for non-equilibrium steady states*, arXiv:1210.4926 (non-equilibrium DMFT for Hubbard model with lateral electric field) - E. M. Stoudenmire and S. R. White,
*Real-Space Parallel Density Matrix Renormalization Group*, arXiv:1301.3494 - J. Büunemann, M. Capone, J. Lorenzana, and G. Seibold,
*Linear-Response Dynamics from the Time-Dependent Gutzwiller Approximation*, arXiv:1303.1665 - B. Verstichel, W. Poelmans, S. De Baerdmacker, S. Wouters, and D. Van
Neck,
*v2DM study of the 2D Hubbard model: Benchmark results with three-index conditions and extended cluster constraints*, arXiv:1307.1002 - M. Kinza and C. Honerkamp,
*Two-particle-correlations in DMFT(fRG)*, arXiv:1307.1298 - S. A. Maier, C. Honerkamp, and Q.-H. Wang,
*Interplay between Point-Group Symmetries and the Choice of the Bloch Basis in Multiband Models*, arXiv:1310.0278 (how to best construct Bloch states and transformation matrices for orbitally nontrivial models, also address the non-trivial transformations of interaction terms) - G. Evenbly and G. Vidal,
*Real-Space Decoupling Transformation for Quantum Many-Body Systems*, Phys. Rev. Lett.**112**, 220502 (2014) (RG) - A. J. Ferris,
*Fourier Transform for Fermionic Systems and the Spectral Tensor Network*, Phys. Rev. Lett.**113**, 010401 (2014) - A. P. Itin and M. I. Katsnelson,
*Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings*, Phys. Rev. Lett.**115**, 075301 (2015) (effective time-independent Hamiltonians obtained by canonical transformations; applied to 1D fermionic and bosonic Hubbard models) - M. Bukov, M. Kolodrubetz, and A. Polkovnikov,
*Schrieffer-Wolff Transformation for Periodically Driven Systems: Strongly Correlated Systems with Artificial Gauge Fields*, Phys. Rev. Lett.**116**, 125301 (2016) (use Floquet theory) - C. Krumnow, L. Veis, Ö. Legeza, and J. Eisert,
*Fermionic Orbital Optimization in Tensor Network States*, Phys. Rev. Lett.**117**, 210402 (2016)

See also: Statistical physics

- M.-C. Chang and Q. Niu,
*Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields*, J. Phys.: Condens. Matter**20**, 193202 (2008) (how to construct semiclassical theories for transport of electrons in crystals) - A. Polkovnikov,
*Representation of quantum dynamics of interacting systems through classical trajectories*, arXiv:0905.3384 (long paper, related to Wigner-Weyl formulation of quantum mechanics) - R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer,
*Energy Cost to Make a Hole in the Fermi Sea*, Phys. Rev. Lett.**106**, 150402 (2011) (non-interacting Fermi gas, give a rigorous lower bound of energy cost based on semiclassical theory) - P. A. Andreev,
*Quantum kinetics derivation as generalization of the quantum hydrodynamics method*, arXiv:1212.0099

- M. Bachmann, H. Kleinert, and A. Pelster,
*Recursive graphical construction of Feynman diagrams in quantum electrodynamics*, Phys. Rev. D**61**, 085017 (2000); H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann,*Recursive graphical construction of Feynman diagrams and their multiplicities in phi*, Phys. Rev. E^{4}and phi^{2}A theory**62**, 1537 (2000) - A. Pelster, H. Kleinert, and M. Bachmann,
*Functional Closure of Schwinger-Dyson Equations in Quantum Electrodynamics, Part 1: Generation of Connected and One-Particle Irreducible Feynman Diagrams*, hep-th/0109014 - D. A. Ivanov and M. A. Skvortsov,
*Dyson-Maleev representation of nonlinear sigma-models*, arXiv:0801.2180 - V. Cvetkovic, Z. Nussinov, and J. Zaanen,
*Ballistic properties of crystalline defects*, arXiv:0905.2996 - H. D. Zeh,
*Quantum discreteness is an illusion*, arXiv:0809.2904 (quantum mechanics derived from QFT and what we learn and unlearn from it) - A. Karch and S. L. Sondhi,
*Non-linear, Finite Frequency Quantum Critical Transport from AdS/CFT*, arXiv:1008.4134 - C. P. Hofmann, A. Raya, and S. S. Madrigal,
*Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics and the 1/N approximation*, arXiv:1010.3466 - R. Cheng and Q. Niu,
*Equivalence of O(3) nonlinear sigma model and the CP1 model: A path integral approach*, arXiv:1010.4590 (proof of the equivalence stated in the title) - G. Chen, A. Essin, and M. Hermele,
*Majorana spin liquids and projective realization of SU(2) spin symmetry*, arXiv:1112.0586

- P. J. Forrester and E. M. Rains,
*Inter-relationships between orthogonal, unitary and symplectic matrix ensembles*, arXiv:solv-int/9907008 (containing a review on random matrix ensembles, including non-standard ones) - I. E. Smolyarenko and B. D. Simons,
*Parametric statistics of individual energy levels in random Hamiltonians*, Phys. Rev. E**67**, 025202(R) (2003) - A. T. Görlich and A. Jarosz,
*Addition of Free Unitary Random Matrices*, math-ph/0408019 - M. M. Duras,
*Simulations of fluctuations of quantum statistical systems of electrons*, cond-mat/0506062 (definition and basic properties of random-matrix ensembles);*Quantum fluctuations of systems of interacting electrons in two spatial dimensions*, cond-mat/0510409 - G. M. Cicuta and H. Orland,
*Real symmetric random matrices and replicas*, cond-mat/0607517 (contains a detailed introduction/review on random matrices and the replica formalism) - E. Gudowska-Nowak, R. J. Janik, J. Jurkiewicz, M. A. Nowak, and W.
Wieczorek,
*Random walkers versus random crowds: diffusion of large matrices*, cond-mat/0612438 (study dynamics of independent random walk of all matrix components) - U. Magnea,
*Random matrices beyond the Cartan classification*, arXiv:0707.0418 (focusing on non-hermitian matrices) - T. Rogers and I. P. Castillo,
*Cavity approach to the spectral density of non-Hermitian sparse matrices*, arXiv:0810.0991 - K. E. Bassler, P. J. Forrester, and N. E. Frankel,
*Eigenvalue Separation in Some Random Matrix Models*, arXiv:0810.1554 (mainly for shifted Gaussian distribution of components) - X. Barillier-Pertuisel, O. Bohigas, and H. A. Weidenmüller,
*Random-Matrix Approach to RPA equations. I*, arXiv:0807.3155 (concerning non-hermitian random matrices appearing in the context of the RPA) - B. Vanderheyden and A. D. Jackson,
*Random matrix model for antiferromagnetism and superconductivity on a two-dimensional lattice*, arXiv:0811.3571 - F. Franchini and V. E. Kravtsov,
*Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms*, arXiv:0905.3533 (non-trivial equivalence of low-energy behavior of a certain RM ensemble and a field theory in curved space-time) - E. Kanzieper,
*Replica Approach in Random Matrix Theory*, arXiv:0909.3198, Oxford Handbook of Random Matrix Theory - Z. Burda, R. A. Janik, and B. Waclaw,
*Spectrum of the Product of Independent Random Gaussian Matrices*, arXiv:0912.3422 - A. Amir, Y. Oreg, and Y. Imry,
*Localization, anomalous diffusion and slow relaxations: a random distance matrix approach*, arXiv:1002.2123 (matrix elements depend exponentially on the separations between randomly distributed points in real space) - N. Saito, Y. Iba, and K. Hukushima,
*Multicanonical sampling of rare events in random matrices*, arXiv:1002.4499 - E. Kanzieper and N. Singh,
*Non-Hermitean Wishart random matrices (I)*, arXiv:1006.3096 - T. Aspelmeier and A. Zippelius,
*The integrated density of states of the random graph Laplacian*, arXiv:1008.1087 - B. A. Khoruzhenko, H.-J. Sommers, and K. Zyczkowski,
*Truncations of Random Orthogonal Matrices*, arXiv:1008.2075 - T. S. Grigera, V. Martin-Mayor, G. Parisi, P. Urbani, and P. Verrocchio,
*On the high-density expansion for Euclidean Random Matrices*, arXiv:1011.2798 - Y. N. Joglekar and W. A. Karr,
*Eigenvalue and level-spacing statistics of random, self-adjoint, non-Hermitian matrices*, arXiv:1012.1202 - C. Nadal and S. N. Majumdar,
*A simple derivation of the Tracy-Widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix*, arXiv:1102.0738 - A. Goetschy and S. E. Skipetrov,
*Non-Hermitian Euclidean random matrix theory*, arXiv:1102.1850 (on matrices of the form*HTH*,^{+}*H*random,*T*given) - G. Livan and P. Vivo,
*Moments of Wishart-Laguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities*, arXiv:1103.2638 - Z. Burda, A. Jarosz, G. Livan, M. A. Nowak, and A. Swiech,
*Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices*, arXiv:1103.3964 (long paper) - G. Akemann and P. Vivo,
*Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without fixed-trace*, arXiv:1103.5617 - F. Mezzadri and N. J. Simm,
*Moments of the transmission eigenvalues, proper delay times and random matrix theory I*, arXiv:1103.6203 (for several ensembles, also non-Gaussian ones) - G. Akemann,
*Non-Hermitian extensions of Wishart random matrix ensembles*, arXiv:1104.5203 - M. Masuku and J. P. Rodrigues,
*How universal is the Wigner distribution?*, arXiv:1107.3681 - G. Shchedrin and V. Zelevinsky,
*Resonance width distribution for open quantum systems*, arXiv:1112.4919 (non-hermitian Hamiltonian) - I. Neri and F. L. Metz,
*Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution*, Phys. Rev. Lett.**109**, 030602 (2012) - S. Kumar,
*Random matrix ensembles: Wang-Landau algorithm for spectral densities*, arXiv:1301.5179 - A. Lakshminarayan,
*On the number of real eigenvalues of products of random matrices and an application to quantum entanglement*, arXiv:1301.7601 (products of matrices from GinOE) - D. A. Ivanov and A. G. Abanov,
*Fisher-Hartwig expansion for Toeplitz determinants and the spectrum of a single-particle reduced density matrix for one-dimensional free fermions*, arXiv:1306.5017 - U. Mordovina and C. Emary,
*Full counting statistics of random transition-rate matrices*, arXiv:1310.4070 - F. D. Cunden and P. Vivo,
*Universal Covariance Formula for Linear Statistics on Random Matrices*, Phys. Rev. Lett.**113**, 070202 (2014)

- N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle,
*Density-Functionals Not Based on the Electron Gas: Local-Density Approximation for a Luttinger Liquid*, Phys. Rev. Lett.**90**, 146402 (2003) - J. Schirmer and A. Dreuw,
*Critique of the foundations of time-dependent density-functional theory*, Phys. Rev. A**75**, 022513 (2007) (claims that the Runge-Gross TDDFT is invalid); N. T. Maitra, K. Burke, and R. van Leeuwen,*Comment on "Critique of the foundations of time-dependent density functional theory"*, arXiv:0710.0018 - C. A. Ullrich and I. V. Tokatly,
*Non-adiabatic electron dynamics in time-dependent density-functional theory*, cond-mat/0602324 (comparison of two different approximations employed in TDDFT) - C. A. Ullrich,
*Time-dependent density-functional theory beyond the adiabatic approximation: insights from a two-electron model system*, cond-mat/0610341 - M. Di Ventra and R. D'Agosta,
*Stochastic Time-Dependent Current-Density-Functional Theory*, Phys. Rev. Lett.**98**, 226403 (2007) - F. C. Alcaraz and K. Capelle,
*Density-functional formulations for quantum chains*, cond-mat/0702080 (applied to quantum spin chains) - Q.-M. Hu, K. Reuter, and M. Scheffler,
*Towards an exact treatment of exchange and correlation in materials: Application to the "CO adsorption puzzle" and other systems*, cond-mat/0703354 (correction of exchange-correlation potential using quantum chemistry for clusters) - K. M. Ho, J. Schmalian, and C. Z. Wang,
*Gutzwiller density functional theory for correlated electron systems*, arXiv:0707.3459 (DFT for highly correlated systems) - D. Rocca, R. Gebauer, Y. Saad, and S. Baroni,
*Turbo charging time-dependent density-functional theory with Lanczos chains*, arXiv:0801.1393 (superoperator formulation of TDDFT, claims to obtain the entire spectrum with numerical effort comparable to finding the ground state in static DFT) - S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross,
*Reduced Density Matrix Functional for Many-Electron Systems*, arXiv:0801.3787 - S. Schenk, M. Dzierzawa, P. Schwab, and U. Eckern,
*Successes and failures of Bethe Ansatz Density Functional Theory*, arXiv:0802.2490 (compares DFT/LDA with exact Bethe ansatz for one-dimensional systems) - G. Vignale,
*On the "Causality Paradox" of Time-Dependent Density Functional Theory*, arXiv:0803.2727 (resolves the paradox) - R. D'Agosta and M. Di Ventra,
*Stochastic time-dependent current-density functional theory: a functional theory of open quantum systems*, arXiv:0805.3734 - D. Vieira and K. Capelle,
*Comparison of three different self-interaction corrections for an exactly solvable model system*, arXiv:0807.2816 (overall, prefering Perdew-Zunger SIC) - P. Mori-Sanchez, A. J. Cohen, and W. Yang,
*The discontinuous nature of the exchange-correlation functional - critical for strongly correlated systems*, arXiv:0809.5108 - I. Dabo, M. Cococcioni, and N. Marzari,
*Non-Koopmans Corrections in Density-functional Theory: Self-interaction Revisited*, arXiv:0901.2637 - Z. Liu and K. Burke,
*Adiabatic Connection for Strictly-Correlated Electrons*, arXiv:0907.2736 (DFT using a strongly correlated but immobile instead of a non-interacting electron gas as the reference; see also the following entry) - P. Gori-Giorgi, M. Seidl, and G. Vignale,
*Density functional theory for strongly interacting electrons*, arXiv:0908.0669, Phys. Rev. Lett. (similar motivation to previous entry) - Y.-K. Yu,
*Derivation of the Density Functional via Effective Action*, arXiv:0910.0670 (long paper) - D. R. Bowler and T. Miyazaki,
*Calculations on millions of atoms with DFT: Linear scaling shows its potential*, arXiv:0911.3584 - H. Eschrig,
*T>0 ensemble-state density functional theory via Legendre transform*, Phys. Rev. B**82**, 205120 (2010), see also Viewpoint: E. Prodan,*Raising the temperature on density-functional theory*, Physics**3**, 99 (2010) - X. Gao, J. Tao, G. Vignale, and I. V. Tokatly,
*Continuum Mechanics for Quantum Many-Body Systems: The Linear Response Regime*, arXiv:1001.0616 (a closed equation for the current density, relies on the assumption of linear response) - E. Luppi, H. Hübener, and V. Véniard,
*Second-Order Nonlinear Optics from First Principles*, arXiv:1001.2472 (using TDDFT) - V. U. Nazarov, G. Vignale, and Y.-C. Chang,
*On the relation between the scalar and tensor exchange-correlation kernels of the time-dependent density-functional theory*, arXiv:1001.2795 (important for the connection between TDDFT and TDCDFT) - A. Cangi, D. Lee, P. Elliott, and K. Burke,
*Leading Corrections to the Local Density Approximation*, arXiv:1002.1351 (based on semiclassical approach, lead to substantial improvements over the LDA) - H. Eschrig,
*T>0 ensemble state density functional theory revisited*, arXiv:1002.4267 - K. Karlsson, F. Aryasetiawan, and O. Jepsen,
*Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme*, arXiv:1004.1321 (idea is to calculate*U*selfconsistently) - D. Karlsson, A. Privitera, and C. Verdozzi,
*Time Dependent Density Functional Theory meets Dynamical Mean Field Theory: Real-Time Dynamics for the 3D Hubbard Model*, arXiv:1004.2264 - J. Schirmer,
*Modifying the variational principle in the action integral functional derivation of time-dependent density functional theory*, arXiv:1010.4223 - I. V. Tokatly,
*Time-dependent current density functional theory on a lattice*, arXiv:1011.2715 - M. Ruggenthaler, F. Mackenroth, and D. Bauer,
*Time-dependent Kohn-Sham approach to quantum electrodynamics*, arXiv:1011.4162 - M. Gatti,
*Design of effective kernels for spectroscopy and molecular transport: time-dependent current-density-functional theory*, arXiv:1012.4502 - S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke,
and E. K. U. Gross,
*Exact Conditions in Finite-Temperature Density-Functional Theory*, Phys. Rev. Lett.**107**, 163001 (2011) - E. M. Stoudenmire, L. O. Wagner, S. R. White, and K. Burke,
*Exact density functional theory with the density matrix renormalization group*, arXiv:1107.2394 - P. E. Bloechl, C. F. J. Walther, and T. Pruschke,
*Is reduced-density-matrix functional theory a suitable vehicle to import explicit correlations into density-functional calculations?*, arXiv:1107.4780 - J. D. Ramsden and R. W. Godby,
*Exact Density-Functional Potentials for Time-Dependent Quasiparticles*, Phys. Rev. Lett.**109**, 036402 (2012) - F. Malet and P. Gori-Giorgi,
*Strong Correlation in Kohn-Sham Density Functional Theory*, Phys. Rev. Lett.**109**, 246402 (2012) (based on the strong-coupling limit of the exchange-correlation functional) - J. Schirmer,
*Runge-Gross action-integral functional re-examined*, arXiv:1203.5052 (states that TDDFT cannot be based on an action principle and presents a straightforward argument for this) - I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii,
*Consistent LDA'+DMFT - an unambiguous way to avoid double counting problem: NiO test*, arXiv:1204.2361 - G. Buttazzo, L. De Pascale, and P. Gori-Giorgi,
*Optimal-transport formulation of electronic density-functional theory*, arXiv:1205.4514 (link between DFT in the strong-interaction limit and the optimal-transport problem established in math and economics) - P. Schmitteckert, M. Dzierzawa, and P. Schwab,
*Exact time-dependent density functional theory for impurity models*, arXiv:1205.4854 (based on DMRG, nonequilibrium situation of impurity coupled to one-dimensional leads under a bias voltage, long-range exchange-correlation functional is switched on instantaneously with the voltage, leading to difficulties in pratical application of TDDFT) - F. Malet and P. Gori-Giorgi,
*Strong correlation in Kohn-Sham density functional theory*, arXiv:1207.2775 - R. D'Agosta and M. Di Ventra,
*Some remarks on the foundations of stochastic time-dependent current-density functional theory for open quantum systems*, arXiv:1209.5529 - E. I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström, A. M. Teale,
and T. Helgaker,
*The choice of basic variables in current-density functional theory*, arXiv:1210.2291 - V. U. Nazarov, G. Vignale, and Y.-C. Chang,
*Non-adiabatic time-dependent density functional theory of the impurity resistivity of metals*, arXiv:1302.1660 (resistivity of metals with impurities from viscosity of electron liquid) - P. Schmitteckert,
*The dark side of DFT based transport calculations*, arXiv:1302.3170 (for a six-site ring: standard DFG approach gives zero conductance even using the exact exchange-correlation functional) - A. Cangi, E. K. U. Gross, and K. Burke,
*Potential functionals versus density functionals*, arXiv:1307.4235 - I. Leonov, V. I. Anisimov, and D. Vollhardt,
*First-Principles Calculation of Atomic Forces and Structural Distortions in Strongly Correlated Materials*, Phys. Rev. Lett.**112**, 146401 (2014) (DFT+DMFT, linear response) - F. G. Eich, M. Di Ventra, and G. Vignale,
*Density Functional Theory of Thermoelectric Phenomena*, Phys. Rev. Lett.**112**, 196401 (2014) (employing a local temperature density coupled to the energy-density operator)**P** - M. Mendoza, S. Succi, and H. J. Herrmann,
*Kinetic Formulation of the Kohn-Sham Equations for ab initio Electronic Structure Calculations*, Phys. Rev. Lett.**113**, 096402 (2014) (Boltzmann-type reformulation of Kohn-Sham equations) - C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio,
*Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory*, Phys. Rev. Lett.**115**, 093001 (2015) - C. Verdi and F. Giustino,
*Fröhlich Electron-Phonon Vertex from First Principles*, Phys. Rev. Lett.**115**, 176401 (2015) - J. Erhard, P. Bleiziffer, and A. Görling,
*Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability*, Phys. Rev. Lett.**117**, 143002 (2016) (see viewpoint)

- R. Schnalle and J. Schnack,
*Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries*, arXiv:1003.1909 (the progress is in making use of both real-space and spin-space symmetries); J. Schnack and J. Ummethum,*Advanced quantum methods for the largest magnetic molecules*, arXiv:1212.0414 - V. Galitski,
*Quantum-to-Classical Correspondence and Hubbard-Stratonovich Dynamical Systems, a Lie-Algebraic Approach*, arXiv:1012.2873 - W. A. Harrison,
*Matching Conditions in Effective-Mass Theory*, arXiv:1108.1224 (how*not*to match wavefunctions between regions with different effective mass) - S. Ganeshan, E. Barnes, and S. Das Sarma,
*Exact Classification of Landau-Majorana-Stückelberg-Zener Resonances by Floquet Determinants*, Phys. Rev. Lett.**111**, 130405 (2013) (periodically driven two-level system)

- R. H. Swendsen and J.-S. Wang,
*Nonuniversal critical dynamics in Monte Carlo simulations*, Phys. Rev. Lett.**58**, 86 (1987) (introducing cluster updates for the Potts model) - A. M. Ferrenberg and R. H. Swendsen,
*New Monte Carlo technique for studying phase transitions*, Phys. Rev. Lett.**61**, 2635 (1988) (how to obtain information on the entire scaling regime close to a second order phase transition from a single simulation, for classical models) - U. Wolff,
*Collective Monte Carlo Updating for Spin Systems*, Phys. Rev. Lett.**62**, 361 (1989) (including XY and Heisenberg models);*Collective Monte Carlo updating in a high precision study of the x-y model*, Nucl. Phys. B**322**, 759 (1989) - B. A. Berg and T. Neuhaus,
*Multicanonical ensemble: A new approach to simulate first-order phase transitions*, Phys. Rev. Lett.**68**, 9 (1992) (the seminal paper on multicanonical simulations, has a few typos) - J. F. Corney and P. D. Drummond,
*Gaussian Quantum Monte Carlo Methods for Fermions and Bosons*, Phys. Rev. Lett.**93**, 260401 (2004), quant-ph/0404052; P. D. Drummond and J. F. Corney,*Quantum phase-space simulations of fermions and bosons*, Computer Phys. Commun.**169**, 412 (2005), cond-mat/0506040 (QMC for fermions apparently avoiding the sign problem) - M. Troyer and U.-J. Wiese,
*Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations*, Phys. Rev. Lett.**94**, 170201 (2005) (shows that the sign problem is NP hard) - A. W. Sandvik,
*Ground state projection of quantum spin systems in the valence bond basis*, cond-mat/0509558 (QMC in a basis of valence bonds) - B. Kyung, G. Kotliar, and A.-M. S. Tremblay,
*Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory*, cond-mat/0601271 (a dynamical cluster/Monte Carlo hybrid method) - W. Nadler and U. H. E. Hansmann,
*On Dynamics and Optimal Number of Replicas in Parallel Tempering Simulations*, arXiv:0709.3289 - Y. Meurice,
*How to control nonlinear effects in Binder cumulants*, arXiv:0712.1190 - E. Bittner, A. Nussbaumer, and W. Janke,
*Make life simple: unleash the full power of the parallel tempering algorithm*, arXiv:0809.0571 - U. Wolff,
*Simulating the All-Order Strong Coupling Expansion I: Ising Model Demo*, arXiv:0808.3934 - E. Farhi, J. Goldstone, D. Gosset, and H. B. Meyer,
*A Quantum Monte Carlo Method at Fixed Energy*, arXiv:0912.4271 - M. Weigel and W. Janke,
*Error estimation and reduction with cross correlations*, arXiv:1002.4517 - E. Gull, D. R. Reichman, and A. J. Millis,
*Bold Line Diagrammatic Monte Carlo Method: General formulation and application to expansion around the Non-Crossing Approximation*, arXiv:1004.0724 - B. M. Rubenstein, J. E. Gubernatis, and J. D. Doll,
*Comparative Monte Carlo Efficiency by Monte Carlo Analysis*, arXiv:1004.0931 (for finding the first subdominant eigenvalue of a [e.g., transition-rate] matrix) - J. Machta,
*Population Annealing: An Effective Monte Carlo Method for Rough Free Energy Landscapes*, arXiv:1006.0252 - J. P. Nilmeier, G. E. Crooks, D. D. L. Minh, and J. D. Chodera,
*Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation*, arXiv:1105.2278 - H. Shinaoka,
*Extended loop algorithm for pyrochlore Heisenberg spin models with spin-ice type degeneracy: application to spin-glass transition in antiferromagnets coupled to local lattice distortions*, arXiv:1107.5103 - E. Bittner and W. Janke,
*Parallel-tempering cluster algorithm for computer simulations of critical phenomena*, arXiv:1107.5640; W. Janke and E. Bittner,*Replica-Exchange Cluster Algorithm*, arXiv:1108.0354 - N. Parragh, A. Toschi, K. Held, and G. Sangiovanni,
*Conserved quantities of SU(2)-invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations*, arXiv:1209.0915 - D. Frenkel,
*Simulations: the dark side*, arXiv:1211.4440, International School of Physics "Enrico Fermi" Course CLXXXIV (possible pitfalls in Monte Carlo and molecular dynamics simulations) - I. Mandre and J. Kalda,
*Efficient method of finding scaling exponents from finite-size Monte-Carlo simulations*, arXiv:1303.0294 - N. S. Blunt, T. W. Rogers, J. S. Spencer, and W. M. C. Foulkes,
*Density matrix quantum Monte Carlo*, arXiv:1303.5007 - W. Witczak-Krempa, E. S. Sørensen, and S. Sachdev,
*The dynamics of quantum criticality revealed by quantum Monte Carlo and holography*, Nature Phys. doi:10.1038/nphys2913 (2014) (focus on dynamics and continuation of imaginary-time results to real time, using new ideas from gauge/gravity duality) - L. Wang, Y.-H. Liu, M. Iazzi, M. Troyer, and G. Harcos,
*Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations*, Phys. Rev. Lett.**115**, 250601 (2015) - G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis,
*Taming the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems*, Phys. Rev. Lett.**115**, 266802 (2015) (by reusing previously obtained information) - Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang,
*Majorana Positivity and the Fermion Sign Problem of Quantum Monte Carlo Simulations*, Phys. Rev. Lett.**116**, 250601 (2016) (unified understanding of all lattice-fermion models free of the sign problem) - F. Alet, K. Damle, and S. Pujari,
*Sign-Problem-Free Monte Carlo Simulation of Certain Frustrated Quantum Magnets*, Phys. Rev. Lett.**117**, 197203 (2016) (employing cluster eigenstates)

- P. B. Allen, T. Berlijn, D. A. Casavant, and J. M. Soler,
*Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs*, arXiv:1212.5702 (unfolding)

- M. Capone, L. dé Medici, and A. Georges,
*Solving Dynamical Mean-Field Theory at very low temperature using Lanczos Exact Diagonalization*, cond-mat/0512484 - J. Lou and A. W. Sandvik,
*Variational ground states of 2D antiferromagnets in the valence bond basis*, cond-mat/0605034 - A. I. Toth, C. P. Moca, O. Legeza, and G. Zarand,
*Density matrix numerical renormalization group for non-Abelian symmetries*, arXiv:0802.4332 - T. Barthel, U. Schollwöck, and S. R. White,
*Spectral functions in one-dimensional quantum systems at T>0*, arXiv:0901.2342 (employing time-dependent DMRG and time-series prediction) - S. Cauley, M. Luisier, V. Balakrishnan, G. Klimeck, and C.-K. Koh,
*Distributed NEGF Algorithms for the Simulation of Nanoelectronic Devices with Scattering*, arXiv:1103.5782 (mainly interesting in efficient implementation) - R. Ng, P. Deuar, and E. Sorensen,
*Simulation of the Dynamics of Many-Body Quantum Spin Systems Using Phase-Space Techniques*, arXiv:1307.3786 - Z. Landau, U. Vazirani, and T. Vidick,
*A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians*, Nature Phys.**11**, 566 (2015) (show that the algorithm always finds the true ground state)

- F. Fazileh, R. J. Gooding, W. A. Atkinson, and D. C. Johnston,
*The role of strong electronic correlations in the metal-to-insulator transition in disordered LiAl*, Phys. Rev. Lett._{y}Ti_{2-y}O_{4}**96**, 046410 (2006) - K.-S. Kim,
*Role of disorder in the Mott-Hubbard transition*, cond-mat/0601326 - S. Sachdev and X. Yin,
*Deconfined criticality and supersymmetry*, arXiv:0808.0191 (exhibit parallels between deconfined criticality in antiferromagnets and supersymmetric gauge theories) - T. Vojta, C. Kotabage, and J. A. Hoyos,
*Infinite-randomness quantum critical points induced by dissipation*, Phys. Rev. B**79**, 024401 (2009) (quantum phase transition in a spin chain with disorder and dissipation, find universality in the sense that details of the disorder do not matter for the low-energy effective theory); see also: G. Rafael,*The universal behavior of a disordered system*, Physics**2**, 1 (2009) (Viewpoint) - S. Kirchner,
*Spin Path Integrals, Berry phase, and the Quantum Phase Transition in the sub-Ohmic Spin-boson Model*, arXiv:1007.4558 (contains an extended pedagogical introduction) - J.-H. She, J. Zaanen, A. R. Bishop, and A. V. Balatsky,
*Stability of Quantum Critical Points in the Presence of Competing Orders*, arXiv:1009.1888 (long paper, for example discussion how competing orders drive a transition to first order) - P. Wölfle and E. Abrahams,
*Quasiparticles beyond the Fermi liquid and heavy fermion criticality*, arXiv:1102.3391 - S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur,
*Detecting Quantum Critical Points using Bipartite Fluctuations*, arXiv:1110.0743 - S. V. Syzranov and J. Schmalian,
*Conductivity close to antiferromagnetic criticality*, arXiv:1207.3444 (temperature and frequency dependence of conductivity in the vicinity of an antiferromagnetic quantum critical point, diagrammatic method, might be applicable to the pnictides) - C. Karrasch and D. Schuricht,
*Dynamical phase transitions after quenches in non-integrable models*, arXiv:1302.3893 - H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M. Brando, S.
Friedemann, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, E. Abrahams, Q.
Si, and F. Steglich,
*Thermal and Electrical Transport across a Magnetic Quantum Critical Point*, arXiv:1307.1066 - R. Vosk and E. Altman,
*Dynamical quantum phase transitions in random spin chains*, arXiv:1307.3256 - Y. Huh, P. Strack, and S. Sachdev,
*Vector boson excitations near deconfined quantum critical points*, arXiv:1307.6860 - T. Furukawa, K. Miyagawa, H. Taniguchi, R. Kato, and K. Kanoda,
*Quantum criticality of Mott transition in organic materials*, Nature Phys. (2015), doi:10.1038/nphys3235 (experiment, universal scaling in three different organic crystals)

- P. B. Wiegmann,
*Exact solution of the s-d exchange model (Kondo problem)*, J. Phys. C**14**, 1463 (1981) (a relatively detailed paper using the Bethe ansatz) - W. Metzner,
*Linked-cluster expansion around the atomic limit of the Hubbard model*, Phys. Rev. B**43**, 8549 (1990) - M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang,
*A class of P,T-invariant topological phases of interacting electrons*, Annals of Physics**310**, 428 (2004) (contains review on relation between quantum field theory and topology) - M. Garst, P. Wölfle, L. Borda, J. von Delft, and L. I. Glazman,
*Energy-resolved inelastic electron scattering off a magnetic impurity*, Phys. Rev. B**72**, 205125 (2005) - A. H. Castro Neto, P. Pujol, and E. Fradkin,
*Ice: a strongly correlated proton system*, cond-mat/0511092 - S. Furukawa, G. Misguich, and M. Oshikawa,
*Systematic Derivation of Order Parameters through Reduced Density Matrices*, Phys. Rev. Lett.**96**, 047211 (2006) - T. D. Stanescu, P. W. Phillips, and T.-P. Choy,
*Much Ado about Zeros: The Luttinger Surface and Mottness*, cond-mat/0602280 (provide a straightforward proof that the single-particle Green function at the Fermi energy has a surface of zeroes at the non-interaction Fermi surface for a Mott insulator and draw interesting conclusions) - D. Roosen, M. R. Wegewijs, and W. Hofstetter,
*Non-equilibrium dynamics of anisotropic large spins in the Kondo regime: Time-dependent numerical renormalization group analysis*, arXiv:0705.3654 (one reservoir, not transport, time-dependent NRG) - S. Glocke, A. Klümper, and J. Sirker,
*The Half-Filled One-Dimensional Extended Hubbard Model: Phase diagram and Thermodynamics*, arXiv:0707.1015 (DMRG) - G. Bergmann and L. Zhang,
*A Compact Approximate Solution to the Kondo Problem*, arXiv:0707.1363 - K. A. Matveev, A. Furusaki, and L. I. Glazman,
*Bosonization of strongly interacting electrons*, arXiv:0708.0212 (in one dimension) - T. Barthel and U. Schollwöck,
*Dephasing and the steady state in quantum many-particle systems*, arXiv:0711.4896 - T.-P. Choy, R. G. Leigh, P. Phillips, and P. D. Powell,
*Exact Integration of the High Energy Scale in Doped Mott Insulators*, Phys. Rev. B**77**, 014512 (2008) - P. Strack, R. Gersch, and W. Metzner,
*Renormalization group flow for fermionic superfluids at zero temperature*, arXiv:0804.3994 - F. Mancini and F. P. Mancini,
*One-dimensional extended Hubbard model in the atomic limit*, arXiv:0804.4419 ("extended" here means with non-local interactions; extensive work containing many exact results obtained in the Hubbard-operator approach, also contains review of previous work and other approaches) - D. Baeriswyl, D. Eichenberger, and M. Menteshashvili,
*Variational ground states of the two-dimensional Hubbard model*, arXiv:0907.1593 (also compared to results from other approaches) - G. S. Uhrig,
*Interaction Quenches of Fermi Gases*, arXiv:0909.1553 (the jump in the momentum distribution vanishes smoothly and stays at the same place after interactions are switched on) - F. G. Eich, S. Kurth, C. R. Proetto, S. Sharma, and E. K. U. Gross,
*Non-collinear spin-spiral phase for the uniform electron gas within Reduced-Density-Matrix-Functional Theory*, arXiv:0910.0534 (going beyond Overhauser's seminal work, which was at the Hartree-Fock level) - J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and
S. Kuhr,
*Single-atom-resolved fluorescence imaging of an atomic Mott insulator*, Nature**467**, 68 (2010) - J. Figgins and D. K. Morr,
*Differential Conductance and Quantum Interference in Kondo Systems*, arXiv:1001.4530 - R. Wortis and W. A. Atkinson,
*Origin of the Zero Bias Anomaly in the Anderson-Hubbard Model*, arXiv:1004.3309 (namely the hybridization between the lower Hubbard orbital at one site and the upper Hubbard orbital at a neighboring site) - D. F. Mross and T. Senthil,
*Charge Friedel oscillations in a Mott insulator*, arXiv:1007.2413 (due to a ghost Fermi surface of emergent neutral fermions) - A. Taraphder, S. Koley, N. S. Vidhyadhiraja, and M. S. Laad,
*Does Charge Density Wave Order Arise From A Preformed Excitonic Liquid in 2H-TaSe*, arXiv:1008.0942 (claim: yes)_{2}**P** - H. Yao and S. A. Kivelson,
*Weak Mott Insulators*, arXiv:1008.1065 (a new class of interaction-induced insulators) - S. Okamoto, D. Sénéchal, M. Civelli, and A.-M. S. Tremblay,
*Dynamical Nematicity from Mott physics*, arXiv:1008.5118 (why very little structural anisotropy can lead to large transport anisotropy) - M. Berciu and H. Fehske,
*Momentum average approximation for models with boson-modulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass*, arXiv:1010.4250 - A. Robertson, V. M. Galitski, and G. Refael,
*Dynamic Stimulation of Quantum Coherence in Lattice Bosons*, arXiv:1011.2208 (periodic driving, or more generally a non-equilibrium situation, at finite temperature can lead to a phase diagram like found at zero temperature) - A. V. Andreev, S. A. Kivelson, and B. Spivak,
*Hydrodynamic description of transport in strongly correlated electron systems*, arXiv:1011.3068 - L. de' Medici,
*Hund's coupling and its key role in tuning multiorbital correlations*, Phys. Rev. B**83**, 205112 (2011) (Hund coupling can reduce the effect of strong electronic correlations and can also partially decouple the bands, paving the way for orbital-selective Mott transitions) - P. W. Anderson,
*The ground state of the Bose-Hubbard model is a supersolid*, arXiv:1102.4797 (... but cannot be a perfect Mott insulator) - S. M. Giampaolo, G. Gualdi, A. Monras, F. Illuminati,
*Theory of classical and quantum frustration in quantum many-body systems*, arXiv:1103.0022 (introduce a general measure of frustration in quantum systems; their definition of frustration in quantum spin systems is non-standard, though)**P** - G. Rohringer, A. Toschi, A. A. Katanin, and K. Held,
*Phase diagram and criticality of the three dimensional Hubbard model*, arXiv:1104.1919 (dynamical vertex approximation) - C. Aron, G. Kotliar, and C. Weber,
*Dimensional Crossover Driven by Electric Field*, arXiv:1105.5387 (at strong field, the non-equilibrium Hubbard model behaves like a lower-dimensional Hubbard model in equilibrium) - L. de' Medici, J. Mravlje, and A. Georges,
*Janus-faced influence of the Hund's rule coupling in strongly correlated materials*, arXiv:1106.0815 (Hund's rule coupling in multi-band systems) - A. Amaricci, C. Weber, M. Capone, and G. Kotliar,
*Non-equilibrium dynamics of the driven Hubbard model*, arXiv:1106.3483 (approach to stationary state in a constant and uniform electric field) - M. Eckstein and P. Werner,
*Damping of Bloch oscillations in the Hubbard model*, arXiv:1107.3830 (Hubbard model in uniform electric field, non-equilibrium DMFT for not too large interaction) - E. Assmann, S. Chiesa, G. G. Batrouni, H. G. Evertz, and R. T. Scalettar,
*Superconductivity and charge order of confined Fermi systems*, arXiv:1108.6303 (2D attractive Hubbard model, interplay of superconductivity and CDW; QMC) - U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S.
Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch,
*Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms*, Nature Physics (2012), doi:10.1038/nphys2205 - S. Kettemann, E. R. Mucciolo, I. Varga, and K. Slevin,
*Kondo-Anderson transitions*, Phys. Rev. B**85**, 115112 (2012) (diluted impurities in a disordered Fermi liquid close to the metal-insulator transition) - J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N.
Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J.-S.
Caux, L. Patthey, H. M. Rønnow, J. van den Brink, and T. Schmitt,
*Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr*, Nature doi:10.1038/nature10974 (2012) (RIXS experiment and theory), see also News and Views_{2}CuO_{3} - R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veenstra, J. A. Rosen,
Y. Singh, P. Gegenwart, D. Stricker, J. N. Hancock, D. van der Marel, I.
S. Elfimov, and A. Damascelli,
*Na2IrO3 as a Novel Relativistic Mott Insulator with a 340-meV Gap*, Phys. Rev. Lett.**109**, 266406 (2012) (an iridate) - V. Zlatic and J. K. Freericks,
*Strongly Enhanced Thermal Transport in a Lightly Doped Mott Insulator at Low Temperature*, Phys. Rev. Lett.**109**, 266601 (2012) - E. Abrahams and P. Wölfle,
*Critical quasiparticle theory: Scaling, thermodynamic and transport properties*, arXiv:1201.0573 - M. Hohenadler, S. Wessel, M. Daghofer, and F. F. Assaad,
*Interaction-range effects for fermions in one dimension*, arXiv:1201.3626 - N. Karchev,
*Quantum critical behavior in three-dimensional one-band Hubbard model at half filling*, arXiv:1202.4627 (bosonization/fermionization) - C. Aron,
*Dielectric Breakdown of a Mott Insulator*, arXiv:1203.3540 (Mott insulator driven out of equilibrium by an electric field) - W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Y. B. Kim,
*Universal transport near a quantum critical Mott transition in two dimensions*, arXiv:1206.3309 - L. Merker, A. Weichselbaum, and T. A. Costi,
*Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model*, arXiv:1207.2631 - K. B. Dave, P. W. Phillips, and C. L. Kane,
*Absence of Luttinger's Theorem*, arXiv:1207.4201 (... in strongly correlated electron systems) - A. V. Chubukov and D. L. Maslov,
*First-Matsubara-frequency rule in a Fermi liquid. Part I: Fermionic self-energy*, arXiv:1208.3483; D. L. Maslov and A. V. Chubukov,*First-Matsubara-frequency rule in a Fermi liquid. Part II: Optical conductivity and comparison to experiment*, arXiv:1208.3485 - K.-U. Giering and M. Salmhofer,
*Self-energy flows in the two-dimensional repulsive Hubbard model*, arXiv:1208.6131 (fRG) - J.-M. Carter and H.-Y. Kee,
*Microscopic theory of magnetism in Sr3Ir2O7*, arXiv:1211.7067 - P. Chandra, P. Coleman, and R. Flint,
*Hastatic order in the heavy-fermion compound URu*, Nature_{2}Si_{2}**493**, 621 (2013) (propose that symmetry under the square of time reversal is spontaneously broken in this compound) - M. Höppner, S. Seiro, A. Chikina, A. Fedorov, M. Güttler,
S. Danzenbächer, A. Generalov, K. Kummer, S. Patil, S. L. Molodtsov, Y.
Kucherenko, C. Geibel, V. N. Strocov, M. Shi, M. Radovic, T. Schmitt, C.
Laubschat, and D. V. Vyalikh,
*Interplay of Dirac fermions and heavy quasiparticles in solids*, Nature Commun.**4**, 1646 (2013) (EuRh2Si2) - P. W. Phillips, B. W. Langley, and J. A. Hutasoit,
*Un-Fermi Liquids: Unparticles in Strongly Correlated Electron Matter*, arXiv:1305.0006 (exploring the unparticle concept introduced by Georgi; an unparticle field is a scale-invariant matter field, use QFT-AdS mapping, application to cuprates) - S. Bulut, W. A. Atkinson, and A. P. Kampf,
*Spatially Modulated Electronic Nematicity in the Three-Band Model of Cuprate Superconductors*, arXiv:1305.3301 - B. Bauer and C. Nayak,
*Area laws in a many-body localized state and its implications for topological order*, arXiv:1306.5753 (Anderson localization in interacting systems); B. Swingle,*A simple model of many-body localization*, arXiv:1307.0507 - F. Hofmann, M. Eckstein, and M. Potthoff,
*Non-equilibrium self-energy-functional theory*, arXiv:1306.6340 - S. P. Chockalingam, C. J. Arguello, E. P. Rosenthal, L. Zhao, C.
Gutiérrez, J. H. Kang, W. C. Chung, R. M. Fernandes, S. Jia, A. J.
Millis, R. J. Cava, and A. N. Pasupathy,
*Visualizing the Charge Density Wave Transition in 2H-NbSe2 in Real Space*, arXiv:1307.2282 (STM and theory; modulation first seen in vicinity of surface defects at high temperatures, in fact look similar to Friedel oscillations) - H. Watanabe and A. Vishwanath,
*Criterion for stability of Goldstone Modes and Fermi Liquid behavior in a metal with broken symmetry*, arXiv:1404.3728 (criterion for when Goldstone modes have a contact interaction with electronic quasiparticles as opposed to a gradient interaction, i.e., for when Adler's theorem fails; contact interaction leads to non-Fermi-liquid behavior), also comment in Journal Club: J. Schmalian,*On Non-Fermi liquid phases due to Goldstone boson exchange*, JCCM_SEP_2014_03 - H. C. Xu, Y. Zhang, M. Xu, R. Peng, X. P. Shen, V. N. Strocov,
M. Shi, M. Kobayashi, T. Schmitt, B. P. Xie, and D. L. Feng,
*Direct Observation of the Bandwidth Control Mott Transition in the NiS2-xSex Multiband System*, Phys. Rev. Lett.**112**, 087603 (2014) (X-ray ARPES, evolution of quasiparticle weight and incoherent spectrum with Se concentration) - K. Limtragool and P. W. Phillips,
*Divergent Thermopower without a Quantum Phase Transition*, Phys. Rev. Lett.**113**, 086405 (2014) - J. A. Kjäll, J. H. Bardarson, and F. Pollmann,
*Many-Body Localization in a Disordered Quantum Ising Chain*, Phys. Rev. Lett.**113**, 107204 (2014) - M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papic, N. Y. Yao, C. R.
Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler,
*Interferometric Probes of Many-Body Localization*, Phys. Rev. Lett.**113**, 147204 (2014) (theoretical proposal for disordered spin systems using ESR) - V. Bisogni, K. Wohlfeld, S. Nishimoto, C. Monney, J. Trinckauf, K.
Zhou, R. Kraus, K. Koepernik, C. Sekar, V. Strocov, B. Büchner, T.
Schmitt, J. van den Brink, and J. Geck,
*Orbital Control of Effective Dimensionality: From Spin-Orbital Fractionalization to Confinement in the Anisotropic Ladder System CaCu2O3*, Phys. Rev. Lett.**114**, 096402 (2015) - E. Kozik, M. Ferrero, and A. Georges,
*Nonexistence of the Luttinger-Ward Functional and Misleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like Models*, Phys. Rev. Lett.**114**, 156402 (2015) - M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert,
*Many-Body Localization Implies that Eigenvectors are Matrix-Product States*, Phys. Rev. Lett.**114**, 170505 (2015) (link dynamical and entanglement properties; clear discussion) - Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R.
Reichman, and T. F. Heinz,
*Observation of biexcitons in monolayer WSe*, Nature Phys._{2}**11**, 477 (2015) (two-electron-two-hole "molecular" state) - S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H. Bardarson,
*Many-Body Localization Characterized from a One-Particle Perspective*, Phys. Rev. Lett.**115**, 046603 (2015) - S. R. White, D. J. Scalapino, and S. A. Kivelson,
*One Hole in the Two-Leg t-J Ladder and Adiabatic Continuity to the Noninteracting Limit*, Phys. Rev. Lett.**115**, 056401 (2015) (DMRG; results can be understood based on quasiparticle picture) - M. Naka, H. Seo, and Y. Motome,
*Theory of Valence Transition in BiNiO3*, Phys. Rev. Lett.**116**, 056402 (2016) (theoretical work explaining huge negative thermal expansion coefficient in terms of charge transfer between Bi and Ni) - H. Yamase, A. Eberlein, and W. Metzner,
*Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model*, Phys. Rev. Lett.**116**, 096402 (2016) - M. Zhu, J. Peng, T. Zou, K. Prokes, S. D. Mahanti, T. Hong, Z. Q. Mao, G.
Q. Liu, and X. Ke,
*Colossal Magnetoresistance in a Mott Insulator via Magnetic Field-Driven Insulator-Metal Transition*, Phys. Rev. Lett.**116**, 216401 (2016) (Ti-doped Ca3Ru2O7, transition is coupled to lattice change) - Y. Ding
*et al.*,*Pressure-Induced Confined Metal from the Mott Insulator Sr3Ir2O7*, Phys. Rev. Lett.**116**, 216402 (2016) (becomes a 2D metal at high pressure)

- J. de Woul and E. Langmann,
*Fermions in two dimensions, bosonization, and exactly solvable models*, arXiv:1207.6783 - T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf,
*Undecidability of the spectral gap*, Nature**528**, 207 (2015) (2D Hamiltonians with constructed short-range interactions, mapping to halting problem for Turing machines); see also longer version arXiv:1502.04573

- E. J. Singley, R. Kawakami, D. D. Awschalom, and D. N. Basov,
*Infrared Probe of Itinerant Ferromagnetism in Ga*, Phys. Rev. B_{1-x}Mn_{x}As**89**, 097203 (2002) - E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom,
and D. N. Basov,
*Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga*, Phys. Rev. B_{1-x}Mn_{x}As**68**, 165204 (2003)**P** - K. S. Burch, J. Stephens, R. K. Kawakami, D. D. Awschalom, and D. N.
Basov,
*Ellipsometric study of the electronic structure of Ga*, Phys. Rev. B_{1-x}Mn_{x}As and low-temperature GaAs**70**, 205208 (2004) (*E*_{1}critical point blue-shifts with Mn concentration, fundamental gap not resolved) - K. Hamaya, T. Koike, T. Taniyama, T. Fujii, Y. Kitamoto, and Y. Yamazaki,
*Dynamic relaxation of magnetic clusters in a ferromagnetic (Ga,Mn)As epilayer*, cond-mat/0511392 (the Curie temperature may actually be a blocking temperature of clusters with high hole concentration) - X. Liu and J. K. Furdyna,
*Ferromagnetic resonance in Ga*, J. Phys.: Condens. Matter_{1-x}Mn_{x}As dilute magnetic semiconductors**18**, R245 (2006) - B. J. Kirby, J. A. Borchers, J. J. Rhyne, K. V. O'Donovan, S. G. E. te
Velthuis, S. Roy, C. Sanchez-Hanke, T. Wojtowicz, X. Liu, W. L. Lim, M.
Dobrowolska, and J. K. Furdyna,
*Magnetic and chemical non-uniformity in Ga*, Phys. Rev. B_{1-x}Mn_{x}As as probed by neutron and x-ray reflectometry**74**, 245304 (2006) - D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno,
*Domain-wall resistance in ferromagnetic (Ga,Mn)As*, cond-mat/0601464 - M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl, and
H. Ohno,
*Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As*, cond-mat/0601515 - K. Hamaya, T. Watanabe, T. Taniyama, A. Oiwa, Y. Kitamoto, and Y.
Yamazaki,
*Magnetic anisotropy switching caused by highly hole-concentrated phase in (Ga,Mn)As*, cond-mat/0601603 - C. Gould, K. Pappert, C. Rüster, R. Giraud, T. Borzenko, G. M.
Schott, K. Brunner, G. Schmidt, and L. W. Molenkamp,
*Current Assisted Magnetization Switching in (Ga,Mn)As Nanodevices*, cond-mat/0602135 - H. K. Choi
*et al.*,*Evidence of metallic clustering in annealed Ga*, cond-mat/0603468 (support for metallic inclusions for material annealed at too high temperatures)_{1-x}Mn_{x}As from atypical scaling behavior of the anomalous Hall coefficient - S. H. Chun, Y. S. Kim, H. K. Choi, I. T. Jeong, W. O. Lee, K. S. Suh, Y.
S. Oh, K. H. Kim, Z. G. Khim, J. C. Woo, and Y. D. Park,
*Interplay between carrier and impurity concentrations in annealed Ga*, cond-mat/0603808 (crossover between intrinsic and extrensic AHE)_{1-x}Mn_{x}As intrinsic anomalous Hall Effect - K. S. Burch, D. B. Shrekenhamer, E. J. Singley, J. Stephens, B. L. Sheu,
R. K. Kawakami, P. Schiffer, N. Samarth, D. D. Awschalom, and D. N. Basov,
*Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor*, cond-mat/0603851 (optical conductivity, analysis of shift of peak maximum with impurity concentration and of weight of the Drude peak)**P** - N. P. Stern, R.C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom,
*Confinement engineering of s-d exchange interactions in GaMnAs quantum wells*, cond-mat/0604576 - S. Russo, T. M. Klapwijk, W. Schoch, and W. Limmer,
*Correlation effects in the density of states of annealed GaMnAs*, cond-mat/0605753 (tunneling in NbTiN/GaMnAs [Mn concentration 4.4%] structure, exhibits a correlation gap of initially 278 meV, which shrinks to 50 meV with annealing)**P** - R. C. Myers, B. L. Sheu, A. W. Jackson, A. C. Gossard, P. Schiffer, N.
Samarth, and D. D. Awschalom,
*Antisite effect on ferromagnetism in (Ga,Mn)As*, cond-mat/0606488 - G. Xiang, M. Zhu, B. L. Sheu, P. Schiffer, and N. Samarth,
*Non-collinear Spin Valve Effect in Ferromagnetic Semiconductor Trilayers*, cond-mat/0607580 - D. Kitchen, A. Richardella, J.-M. Tang, M. E. Flatté, and A.
Yazdani,
*Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions*, cond-mat/0607765 (experiment and theory) - S. Lee, A. Trionfi, T. Schallenberg, H. Munekata, and D. Natelson,
*Quantum coherence in ferromagnetic semiconductors: time-dependent universal conductance fluctuations and magnetofingerprint*, cond-mat/0608036**P** - K. Pappert, M. J. Schmidt, S. Hümpfner, C. Rüster, G. M.
Schott, K. Brunner, C. Gould, G. Schmidt, and L. W. Molenkamp,
*Magnetization-Switched Metal-Insulator Transition in a (Ga,Mn)As Tunnel Device*, cond-mat/0608683 - V. Holy, Z. Matej, O. Pacherova, V. Novak, M. Cukr, K. Olejnik, and T.
Jungwirth,
*Mn incorporation in as-grown and annealed (Ga,Mn)As layers studied by x-ray diffraction and standing-wave fluorescence*, cond-mat/0609163 (substitutional Mn is rather immobile) - T. Figielski, T. Wosinski, A. Morawski, A. Makosa, J. Wrobel, and J.
Sadowski,
*Magneto-resistive memory in ferromagnetic (Ga,Mn)As nanostructures*, cond-mat/0610535 - A. W. Rushforth, A. D. Giddings, K. W. Edmonds, R. P. Campion, C. T. Foxon
and B. L. Gallagher,
*AMR and magnetometry studies of ultra thin GaMnAs films*, cond-mat/0610692, physica status solidi (c) - K. Pappert, S. Hümpfner, J. Wenisch, K. Brunner, C. Gould, G.
Schmidt, and L. W. Molenkamp,
*Transport Characterization of the Magnetic Anisotropy of (Ga,Mn)As*, cond-mat/0611156 - J.M. Kivioja, M. Prunnila, S. Novikov, P. Kuivalainen, and J. Ahopelto,
*Energy Transport between Hole Gas and Crystal Lattice in Diluted Magnetic Semiconductor*, cond-mat/0611704 - S. Ohya, K. Ohno, and M. Tanaka,
*Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs*, cond-mat/0612055 (10 nm thin films with up to 21.3% Mn, claimed to be homogeneous) - S. Hümpfner, M. Sawicki, K. Pappert, J. Wenisch, K. Brunner, C.
Gould, G. Schmidt, T. Dietl, and L. W. Molenkamp,
*Lithographic engineering of anisotropies in (Ga,Mn)As*, cond-mat/0612439 - V. V. Rylkov, A. S. Lagutin, B. A. Aronzon, V. V. Podolskii, V. P.
Lesnikov, M. Goiran, J. Galibert, B. Raquet, and J. Leotin,
*Peculiarities of the transport properties of InMnAs layers, produced by the laser deposition, in strong magnetic fields*, cond-mat/0612641 - G. S. Chang, E. Z. Kurmaev, L. D. Finkelstein, H. K. Choi, W. O. Lee, Y.
D. Park, T. M. Pedersen, and A. Moewes,
*Post-annealing effect on the electronic structure of Mn atoms in Ga*, J. Phys.: Condens. Matter_{1-x}Mn_{x}As probed by resonant inelastic x-ray scattering**19**, 076215 (2007) (interstitial Mn diffuses to surface and is passivated by oxydation) - L. P. Rokhinson, Y. Lyanda-Geller, Z. Ge, S. Shen, X. Liu, M.
Dobrowolska, and J. K. Furdyna,
*Weak localization in Ga*, Phys. Rev. B_{1-x}Mn_{x}As: evidence of impurity band transport**76**, 161201(R) (2007) (5% and 6.5% Mn); N. V. Agrinskaya and V. I. Kozub,*Comment*, arXiv:0912.0642 (suggest that low-temperature features are due to a superconducting transition in the indium leads) - K. Pappert, S. Hümpfner, C. Gould, J. Wenisch, K. Brunner, G.
Schmidt, and L. W. Molenkamp,
*Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Non-volatile Memory Device*, cond-mat/0701478; J. Wenisch, C. Gould, L. Ebel, J. Storz, K. Pappert, M. J. Schmidt, C. Kumpf, G. Schmidt, K. Brunner, and L. W. Molenkamp,*Control of magnetic anisotropy in (Ga,Mn)As by lithography-induced strain relaxation*, cond-mat/0701479 - A. W. Rushforth, K. Vyborny, C. S. King, K. W. Edmonds, R. P. Campion, C.
T. Foxon, J. Wunderlich, A. C. Irvine, P. Vasek, V. Novák, K.
Olejník, T. Jungwirth, and B. L. Gallagher,
*The Origin and Control of the Sources of Anisotropic Magnetoresistance in (Ga,Mn)As Devices*, cond-mat/0702357 - J. Wang, I. Cotoros, K. M. Dani, D. S. Chemla, X. Liu, and J. K. Furdyna,
*Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes in GaMnAs*, cond-mat/0702439 - L. Thevenard, L. Largeau, O. Mauguin, A. Lemaitre, K. Khazen, and J. von
Bardeleben,
*Evolution of the magnetic anisotropy with carrier density in hydrogenated (Ga,Mn)As*, cond-mat/0702548 - D. Neumaier, K. Wagner, S. Geissler, U. Wurstbauer, J. Sadowski, W.
Wegscheider, and D. Weiss,
*Weak localization in ferromagnetic (Ga,Mn)As nanostructures*, cond-mat/0703053 - V. Novak, K. Olejnik, M. Cukr, L. Smrcka, Z. Remes, and J. Oswald,
*Substrate temperature changes during MBE growth of GaMnAs*, arXiv:0704.2485 - J. Honolka, S. Masmanidis, H. X. Tang, D. D. Awschalom, and M. L. Roukes,
*Magnetotransport properties of strained (Ga0.95, Mn0.05)As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory*, arXiv:0705.0121 (experiment and theory, finding good agreement) - J. Qi, Y. Xu, N. Tolk, X. Liu, J. K. Furdyna, and I. E. Perakis,
*Coherent Magnetization Precession in GaMnAs induced by Ultrafast Optical Excitation*, arXiv:0706.4270 (local heating by laser pulse leads to reorientation of easy axis) - T. Slupinski, J. Caban, and K. Moskalik,
*Hole Transport in Impurity Band and Valence Bands Studied in Moderately Doped GaAs:Mn Single Crystals*, arXiv:0707.0968 (up to 0.3% Mn) - J. Wunderlich, A. C. Irvine, J. Zemen, V. Holy, A. W. Rushforth, E. De
Ranieri, U. Rana, K. Vyborny, J. Sinova, C. T. Foxon, R. P. Campion, D. A.
Williams, B. L. Gallagher, and T. Jungwirth,
*Magnetocrystalline anisotropy controlled local magnetic configurations in (Ga,Mn)As spin-transfer-torque microdevices*, arXiv:0707.3329 (includes theory) - R. Farshchi, P. D. Ashby, D. J. Hwang, C. P. Grigoropoulos, R.V.
Chopdekar, Y. Suzuki, and O. D. Dubon,
*Hydrogen patterning of Ga*, arXiv:0708.0389_{1-x}Mn_{x}As for planar spintronics - M. Zhu, X. Li, G. Xiang, and N. Samarth,
*Random telegraph noise from magnetic nanoclusters in the ferromagnetic semiconductor (Ga,Mn)As*, arXiv:0708.1895 - B. J. Kirby, J. A. Borchers, X. Liu, Y. J. Cho, M. Dobrowolska, and J. K.
Furdyna,
*Definitive Evidence of Interlayer Coupling Between (Ga,Mn)As*, arXiv:0708.2289 (show that magnetic coupling in (Al,Be,Ga)As/(Ga,Mn)As/GaAs/(Ga,Mn)As depends on spacer thickness) - G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V.
Lazarev, M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W.
Molenkamp,
*Suppression of electron spin relaxation in Mn-doped GaAs*, arXiv:0710.0246 - A. Kudelski, A. Lemaitre, A. Miard, P. Voisin, T. C. M. Graham, R. J.
Warburton, and O. Krebs,
*Optically probing the fine structure of a single Mn atom in an InAs quantum dot*, arXiv:0710.5389 - D. Neumaier, M. Schlapps, U. Wurstbauer, J. Sadowski, M. Reinwald, W.
Wegscheider, and D. Weiss,
*Electron-electron interaction in 2D and 1D ferromagnetic (Ga,Mn)As*, arXiv:0711.3278 (also with theoretical interpretation) - Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi,
*Mott Relation for Anomalous Hall and Nernst Effects in Ga1-xMnxAs Ferromagnetic Semiconductors*, Phys. Rev. Lett.**101**, 117208 (2008) (measure large Seebeck coefficient among other quantities)**P** - A. A. Freeman, K. W. Edmonds, G. van der Laan, R. P. Campion, N. R. S.
Farley, A. W. Rushforth, T. K. Johal, C. T. Foxon, B. L. Gallagher, A.
Rogalev, and F. Wilhelm,
*Valence band orbital polarization in III-V ferromagnetic semiconductors*, arXiv:0801.0673 - Y. Takeda, M. Kobayashi, T. Okane, T. Ohkochi, J. Okamoto, Y. Saitoh, K.
Kobayashi, H. Yamagami, A. Fujimori, A. Tanaka, J. Okabayashi, M. Oshima, S.
Ohya, P. N. Hai, and M. Tanaka,
*Nature of magnetic coupling between Mn ions in as-grown Ga*, arXiv:0801.1155 (ferromagnetic correlations seen above_{1-x}Mn_{x}As studied by x-ray magnetic circular dichroism*T*, role of interstitials)_{C} - M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, and J. K. Furdyna,
*GaMnAs-based hybrid multiferroic memory device*, arXiv:0801.4191 - A. Sugawara, H. Kasai, A. Tonomura, P. D. Brown, R. P. Campion, K.W.
Edmonds, B. L. Gallagher, J. Zemen, and T. Jungwirth,
*Domain walls in (Ga,Mn)As diluted magnetic semiconductor*, arXiv:0802.1574 (experiment and theory) - E. Rozkotova, P. Nemec, P. Horodyska, D. Sprinzl, F. Trojanek, P. Maly,
V. Novak, K. Olejnik, M. Cukr, and T. Jungwirth,
*Light-induced magnetization precession in GaMnAs*, arXiv:0802.2043 (experiment and theory) - K. W. Edmonds, G. van der Laan, N. R. S. Farley, E. Arenholz, R. P.
Campion, C. T. Foxon, and B. L. Gallagher,
*Strain dependence of the Mn anisotropy in ferromagnetic semiconductors observed by x-ray magnetic circular dichroism*, arXiv:0802.2061 - I. Stolichnov, S. W. E. Riester, H. J. Trodahl, N. Setter, A. W.
Rushforth,
K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, and T. Jungwirth,
*Nonvolatile ferroelectric control of ferromagnetism in (Ga,Mn)As*, arXiv:0802.2074 (ferromagnetic/ferroelectric bilayer) - K. Olejnik, M. H. S. Owen, V. Novak, J. Masek, A. C. Irvine,
J. Wunderlich,
and T. Jungwirth,
*Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: A surface oxide control study*, arXiv:0802.2080 - W. Limmer, J. Daeubler, L. Dreher, M. Glunk, W. Schoch, S. Schwaiger, and
R. Sauer,
*Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga,Mn)As layers*, arXiv:0802.2635 (experiment and model) - E. De Ranieri, A. W. Rushforth, K. Vyborny, U. Rana, E. Ahmed, R. P.
Campion, C. T. Foxon, B. L. Gallagher, A. C. Irvine, J. Wunderlich, and T.
Jungwirth,
*Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As*, arXiv:0802.3344 - C. Gould, S. Mark, K. Pappert, G. Dengel, J. Wenisch, R. P. Campion, A.
W. Rushforth, D. Chiba, Z. Li, X. Liu, W. Van Roy, H. Ohno, J. K. Furdyna, B.
Gallagher, K. Brunner, G. Schmidt, and L. W. Molenkamp,
*An extensive comparison of anisotropies in MBE grown (Ga,Mn)As material*, arXiv:0802.4206 (comparison of samples grown by the leading groups) - E. Rozkotova, P. Nemec, D. Sprinzl, P. Horodyska, F. Trojanek, P. Maly,
V. Novak, K. Olejnik, M. Cukr, and T. Jungwirth,
*Laser-induced Precession of Magnetization in GaMnAs*, arXiv:0803.0320 - A. D. Giddings, O. N. Makarovsky, M. N. Khalid, S. Yasin, K. W. Edmonds,
R. P. Campion, J. Wunderlich, T. Jungwirth, D. A. Williams, B. L. Gallagher,
and C. T. Foxon,
*Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions*, arXiv:0803.3416 - J.-M. Jancu, J.-Ch. Girard, M. Nestoklon, A. Lemaitre, F. Glas, and Z. Z.
Wang,
*STM images of sub-surface Mn atoms in GaAs: evidence of hybridization of surface and impurity states*, arXiv:0803.3975 (emphasizing that surface states are crucial for the understanding of STM images of sub-surface dopants) - V. Novák, K. Olejník, J. Wunderlich, M. Cukr, K. Vyborny,
A. W.
Rushforth, R. P. Campion, B. L. Gallagher, Jairo Sinova, and T. Jungwirth,
*Singularity in temperature derivative of resistivity in (Ga,Mn)As at the Curie point*, arXiv:0804.1578 (experiment and theory, case of high T_{c}, i.e., resistivity likely not dominated by disorder)**P** - M. A. Scarpulla, R. Farshchi, P. R. Stone, R. V. Chopdekar, K. M. Yu, Y.
Suzuki, and O. D. Dubon,
*Electrical transport and ferromagnetism in Ga*, arXiv:0804.1612_{1-x}Mn_{x}As synthesized by ion implantation and pulsed-laser melting - N. A. Goncharuk, J. Kucera, K. Olejnik, V. Novak, L. Smrcka, Z.
Matej, L. Nichtova, and V. Holy,
*Study of Mn K-edge XANES in (Ga,Mn)As diluted magnetic semiconductors*, arXiv:0805.0957 (experiment and ab-initio theory: signatures of substitutional and intersitial Mn are distinct, concentration of Mn institials is found to decrease but not vanish upon annealing) - A. Wirthmann, X. Hui, N. Mecking, Y. S. Gui, T. Chakraborty,
M. Reinwald, C. Schüller, W. Wegscheider, and C.-M. Hu,
*Broadband electrical detection of spin excitations in (Ga,Mn)As using a photovoltage technique*, arXiv:0806.0785 - P. R. Stone, K. Alberi, S. K. Z. Tardif, J. W. Beeman, K. M. Yu, W.
Walukiewicz, and O. D. Dubon,
*Metal-insulator transition by isovalent anion substitution in Ga*, arXiv:0807.3722 (substitution of P and N for As in the percent range drives the system insulating and reduces the Curie temperature by about 50%)_{1-x}Mn_{x}As: Implications to ferromagnetism - M. Wang, R. P. Campion, A. W. Rushforth, K. W. Edmonds, C. T. Foxon, and
B. L. Gallagher,
*Achieving High Curie Temperature in (Ga,Mn)As*, arXiv:0808.1464, Appl. Phys. Lett.**93**, 132103 (2008) - D. Neumaier, M. Turek, U. Wurstbauer, A. Vogl, M. Utz, W. Wegscheider,
and D. Weiss,
*All electrical measurement of the density of states in (Ga,Mn)As*, arXiv:0902.2675 (measured density of states is in agreement with models having no disorder [for 3D case] or merged impurity and valence bands [for 1D and 2D]) - M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer,
W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt,
*Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration*, arXiv:0904.1565 - R. Gonzalez-Arrabal, Y. Gonzalez, L. Gonzalez, M. Garcia-Hernandez, F.
Munnik, and M. S. Martin-Gonzalez,
*Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy*, arXiv:0904.2132 (attributed to oxygen-deficient MnO_{2}(!) segregation) - M. Schlapps, T. Lermer, S. Geissler, D. Neumaier, J. Sadowski, D. Schuh,
W. Wegscheider, and D. Weiss,
*Transport through (Ga,Mn)As nanoislands: Coulomb-blockade and temperature dependence of the conductance*, arXiv:0904.3225 - C. Sun, J. Kono, Y. Cho, A. K. Wojcik, A. Belyanin, and H. Munekata,
*Magneto-optical Kerr Spectroscopy of GaMnAs: Interband or Impurity Transitions?*, arXiv:0907.1546 (results can be explained within the kinetic-exchange picture using a Luttinger-Kohn Hamiltonian) - G. Acbas, M.-H. Kim, M. Cukr, V. Novak, M. A. Scarpulla, O. D. Dubon,
T. Jungwirth, J. Sinova, and J. Cerne,
*Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy*, arXiv:0907.0207 (supports the valence-band picture) - M. Cubukcu, H. J. von Bardeleben, Kh. Khazen, J. L. Cantin, O. Mauguin, L.
Largeau, and A. Lemaitre,
*Phosphorous alloying: controlling the magnetic anisotropy in ferromagnetic (Ga,Mn)(As,P) Layers*, arXiv:0908.0063 - M. Glunk, J. Daeubler, W. Schoch, R. Sauer, and W. Limmer,
*Scaling relation of the anomalous Hall effect in (Ga,Mn)As*, arXiv:0908.2935 - O. Krebs, E. Benjamin, and A. Lemaître,
*Magnetic anisotropy of singly Mn-doped InAs/GaAs quantum dots*, arXiv:0909.0877 (surprising splitting, but well explained by theoretical model) - M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski,
F. Matsukura, T. Dietl, and H. Ohno,
*Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As*, arXiv:0909.3694, Nature Physics (published online 2009, doi:10.1038/nphys1455) (*T*decreases monotonically when the hole concentration is reduced by a gate voltage for a Mn concentration of about 7%, no sign of an impurity band)_{c}**P** - A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D.
Awschalom, and A. Yazdani,
*Visualizing Critical Correlations near the Metal-Insulator Transition in Ga*, Science_{1-x}Mn_{x}As**327**, 665 (2010) (STM; importantly, see interaction-induced [Altshuler-Aronov] suppression of LDOS at the Fermi energy but no dip in the LDOS due to a merged impurity band, not even at 1.5% Mn; on the other hand, the LDOS looks fractal, very impurity-band-like at the Fermi energy); see also Perspective: G. A. Fiete and A. de Lozanne,*Seeing Quantum Fractals*, Science**327**, 652 (2010), and Dietl and Sztenkiel, cited below - C. Celebi, J. K. Garleff, A. Yu. Silov, A. M. Yakunin, P. M. Koenraad,
W. Van Roy, J.-M. Tang, and M. E. Flatté,
*Surface Induced Asymmetry of Acceptor Wave Functions*, Phys. Rev. Lett.**104**, 086404 (2010) (STM experiments, also compared to tight-binding calculations) - S. R. Dunsiger, J. P. Carlo, T. Goko, G. Nieuwenhuys, T. Prokscha, A.
Suter, E. Morenzoni, D. Chiba, Y. Nishitani, T. Tanikawa, F. Matsukura, H.
Ohno, J. Ohe, S. Maekawa, and Y. J. Uemura,
*Spatially homogeneous ferromagnetism of (Ga, Mn)As*, Nature Mat.**9**, 299 (2010) - E. H. C. P. Sinnecker, G. M. Penello, T. G. Rappoport, M. M. Sant'Anna,
D. E. R. Souza, M. P. Pires, J. K. Furdyna, and X. Liu ,
*Ion-beam modification of the magnetic properties of Ga*, Phys. Rev. B_{1-x}Mn_{x}As epilayers**81**, 245203 (2010) (layers of 200 nm thickness with nominally 5% Mn doping, ion irradiation to introduce defects, magnetism are found to be rather robust under irradiation, authors conclude that holes reside in an impurity band; note changes of title and author list compared to first preprint version, arXiv:0811.3158)**P** - L. Horak, Z. Soban, and V. Holy,
*Study of Mn interstitials in (Ga,Mn)As using high-resolution x-ray diffraction*, J. Phys.: Condens. Matter**22**, 296009 (2010) - D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T.
Dietl, and H. Ohno,
*Anomalous Hall Effect in Field-Effect Structures of (Ga,Mn)As*, Phys. Rev. Lett.**104**, 106601 (2010) - T. Jungwirth, P. Horodyska, N. Tesarova, P. Nemec, J. Subrt, P. Maly,
P. Kuzel, C. Kadlec, J. Masek, I. Nemec, V. Novak, K. Olejnik, Z. Soban, P.
Vasek, P. Svoboda, and J. Sinova,
*Systematic Study of Mn-Doping Trends in Optical Properties of (Ga,Mn)As*, Phys. Rev. Lett.**105**, 227201 (2010) (mid-infrared peak found to blue-shift with increasing Mn concentration for weakly compensated samples, supporting a valence-band picture) - K. Olejnik, P. Wadley, J. A Haigh, K. W. Edmonds, R. P. Campion, A. W.
Rushforth, B. L. Gallagher, C. T. Foxon, T. Jungwirth, J. Wunderlich, S. S.
Dhesi, S. Cavill, G. van der Laan, and E. Arenholz,
*Exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal*, arXiv:1001.2449 - K. Y. Wang, K. W. Edmonds, A. C. Irvine, J. Wunderlich, A. W.
Rushforth, R. P. Campion, D. A. Williams, C. T. Foxon, and B. L. Gallagher,
*Small Domain Wall Resistance in Perpendicular (Ga,Mn)As*, arXiv:1001.2631 - Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl,
and H. Ohno,
*Curie temperature versus hole concentration in field-effect structures of Ga1-xMnxAs*, arXiv:1001.3909 (support for Zener model with non-uniform carrier concentration) - L. Dreher, D. Donhauser, J. Daeubler, M. Glunk, C. Rapp, W. Schoch, R.
Sauer, and W. Limmer,
*Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: application to (113)A-oriented layers*, arXiv:1002.2179 - J. Bak-Misiuk, K. Lawniczak-Jablonska, E. Dynowska, P. Romanowski,
J. Z. Domagala, J. Libera, A. Wolska, M. T. Klepka, P. Dluzewski, J. Sadowski,
A. Barcz, D. Wasik, A. Twardowski, and W. Caliebe,
*New evidence for structural and magnetic properties of GaAs:(Mn,Ga)As granular layers*, arXiv:1004.3942 - P. Wadley, A. A. Freeman, K. W. Edmonds, G. van der Laan, J. S. Chauhan,
R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, F. Wilhelm, A.
G. Smekhova, and A. Rogalev,
*Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from K edge x-ray magnetic circular dichroism*, arXiv:1005.4577 (strongly supports a transfer of the dominant hole magnetic moments from Mn to As with increasing Mn doping) - Sh. U. Yuldashev, Kh. T. Igamberdiev, S. Lee, Y. H. Kwon, T. W.
Kang, Y. Kim, H. Im, and A. G. Shashkov,
*Specific heat study of Ga1-xMnxAs*, arXiv:1006.1023 (consistent with second-order phase transition, Mn concentration 2.6% and lower) - L. Herrera Diez, M. Konuma, E. Placidi, F. Arciprete, A. W. Rushforth,
R. P. Campion, B. L. Gallagher, J. Honolka, and K. Kern,
*Manipulation of electrical and ferromagnetic properties of photo-sensitized (Ga,Mn)As*, arXiv:1006.3174 (fluorescein adsorbed on (Ga,Mn)As found to permit control of Curie temperature and coercive field with visible light) - C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R.
C. Myers,
*Observation of the Spin-Seebeck Effect in a Ferromagnetic Semiconductor*, arXiv:1007.1364 - S. Piano, R. Grein, C. J. Mellor, R. Campion, K. Vyborny, M. Eschrig,
and B. L. Gallagher,
*Spin polarization of (Ga,Mn)As measured by Andreev Spectroscopy: The role of spin-active scattering*, arXiv:1008.1788 (experiment and theoretical interpretation, finding 56% spin polarization of tunneling carriers at the Fermi energy) - I. A. Akimov, R. I. Dzhioev, V. L. Korenev, Yu. G. Kusrayev, V. F.
Sapega, D. R. Yakovlev, and M. Bayer,
*Optical orientation of Mn*, arXiv:1010.1463 (due to conduction-band electrons)^{2+}ions in GaAs - M. Kopecky, J. Kub, F. Maca, J. Masek, O. Pacherova, B. L. Gallagher,
R. P. Campion, V. Novak, and T. Jungwirth,
*Detection of stacking faults breaking the [110]/[1-10] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P)*, arXiv:1012.4690 (stacking faults observed in the (111) and (11-1) planes of the (001) film, this breaks the fourfold in-plane symmetry) - O. Yastrubchak, J. Zuk, H. Krzyzanowska, J. Z. Domagala, T.
Andrearczyk, J. Sadowski, and T. Wosinski,
*Photoreflectance Study of the Fundamental Optical Properties of (Ga,Mn)As Epitaxial Films*, arXiv:1012.4760 (the impurity and valence bands have merged for 6% Mn) - S. Mark, P. Dürrenfeld, K. Pappert, L. Ebel, K. Brunner, C. Gould,
and L. W. Molenkamp,
*Fully Electrical Read-Write Device Out of a Ferromagnetic Semiconductor*, Phys. Rev. Lett.**106**, 057204 (2011) - S. Ohya, K. Takata, and M. Tanaka,
*Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs*, Nature Physics (advance online publication 2011) (resonant tunneling spectroscopy, claim a nearly pristine valence band and a separate impurity band for up to 15% Mn); see Dietl and Sztenkiel, cited below - J. Adell, I. Ulfat, L. Ilver, J. Sadowski, K. Karlsson, and J. Kanski,
*Thermal diffusion of Mn through GaAs overlayers on (Ga, Mn)As*, J. Phys.: Condens. Matter**23**, 085003 (2011) (8 ML of GaAs prevent outdiffusion of Mn) - I. Stolichnov, S. W. E. Riester, E. Mikheev, N. Setter, A. W. Rushforth,
K. W. Edmonds, R. P. Campion, C. T. Foxon, B. L. Gallagher, T. Jungwirth,
and H. J. Trodahl,
*Enhanced Curie temperature and nonvolatile switching of ferromagnetism in ultrathin (Ga,Mn)As channels*, Phys. Rev. B**83**, 115203 (2011) - B. C. Chapler, R. C. Myers, S. Mack, A. Frenzel, B. C. Pursley, K. S.
Burch, E. J. Singley, A. M. Dattelbaum, N. Samarth, D. D. Awschalom, and D.
N. Basov,
*An infrared probe of the insulator-to-metal transition in GaMnAs and GaBeAs*, Phys. Rev. B**84**, 081203(R) (2011) (in GaMnAs with up to 16% Mn, features attributed to impurities persist in the metallic state whereas in GaBeAs they do not, suggest impurity-band conduction in GaMnAs) - J. Fujii, M. Sperl, S. Ueda, K. Kobayashi, Y. Yamashita, M. Kobata, P.
Torelli, F. Borgatti, M. Utz, C. S. Fadley, A. X. Gray, G. Monaco, C. H.
Back, G. van der Laan, and G. Panaccione,
*Identification of Different Electron Screening Behavior Between the Bulk and Surface of (Ga,Mn)As*, Phys. Rev. Lett.**107**, 187203 (2011) (photoemission using hard x-rays); M. Moreno and K. H. Ploog,*Comment*, arXiv:1204.2987 - P. Nemec, E. Rozkotova, N. Tesarova, F. Trojanek, K. Olejnik, J.
Zemen, V. Novak, M. Cukr, P. Maly, and T. Jungwirth,
*Non-thermal laser induced precession of magnetization in ferromagnetic semiconductor (Ga,Mn)As*, arXiv:1101.1049 (pump-probe experiments and theory) - Y. Hashimoto, H. Amano, Y. Iye, and S. Katsumoto,
*Magnetization dependent current rectification in (Ga,Mn)As magnetic tunnel junctions*, arXiv:1104.3619 - L. Horak, J. Matejova, X. Marti, V. Holy, V. Novak, Z. Soban,
S. Mangold, and F. Jimenez-Villacorta,
*Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers*, arXiv:1105.0849 (x-ray spectroscopy and simulation of diffusion; electric field of charged defects is important) - Sh. U. Yuldashev, Kh. T. Igamberdiev, Y. H. Kwon, Sanghoon Lee, X.
Liu, J. K. Furdyna, A. G. Shashkov, and T. W. Kang,
*Crossover critical behavior of Ga1-xMnxAs*, arXiv:1108.1028 (suggest that the typical range of the effective Mn-Mn exchange interaction is large compared to 5 Å) - M. Gryglas-Borysiewicz, A. Kwiatkowski, M. Baj, D. Wasik, J. Przybytek,
and J. Sadowski,
*Hydrostatic pressure study of paramagnetic-ferromagnetic phase transition in (Ga,Mn)As*, arXiv:1108.3960 - S. Piano, A. W. Rushforth, K. W. Edmonds, R. P. Campion, G. Adesso, and B.
L. Gallagher,
*Analysing surface structures on (Ga,Mn)As by Atomic Force Microscopy*, arXiv:1111.3685 (ripples along [1,-1,0] direction) - M. Bombeck, A. S. Salasyuk, B. A. Glavin, A. V. Scherbakov, C.
Brüggemann, D. R. Yakovlev, V. F. Sapega, X. Liu, J. K. Furdyna, A. V.
Akimov, and M. Bayer,
*Selective spin wave excitation in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses*, arXiv:1112.3394 - M. Dobrowolska, K. Tivakornsasithorn. X. Liu, J. K. Furdyna, M. Berciu,
K. M. Yu, and W. Walukiewicz,
*Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band*, Nature Materials doi:10.1038/nmat3250 (2012) (doping up to about 5%, channeling,*T*, transport, and MCD, favor an impurity-band model, do not address its width); K. W. Edmonds, B. L. Gallagher, M. Wang, A. W. Rushforth, O. Makarovsky, A. Patane, R. P. Campion, C. T. Foxon, V. Novak, and T. Jungwirth,_{c}*Correspondence*on Dobrowolska*et al.*, arXiv:1211.3860 (*T*is maximized at low compensation, inconsistent with an impurity-band picture); M. Dobrowolska, X. Liu, J. K. Furdyna, M. Berciu, K. M. Yu, and W. Walukiewicz,_{c}*Response*, 1211.4051 (thin films are indeed distinct from bulk DMS) - N. Tesarova, P. Nemec, E. Rozkotova, J. Subrt, H. Reichlova, D.
Butkovicova, F. Trojanek, P. Maly, V. Novak, and T. Jungwirth,
*Direct measurement of the three dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method*, arXiv:1201.1213 - M. W. Gutowski, W. Stefanowicz, O. Proselkov, J. Sadowski, M. Sawicki,
and R. Zuberek,
*Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As*, arXiv:1201.2836 (experiments analyzed with the help of a novel prescription, which does not become fully clear) - O. Proselkov, D. Sztenkiel, W. Stefanowicz, M. Aleszkiewicz, J.
Sadowski, T. Dietl, and M. Sawicki,
*Thickness dependence of magnetic properties of (Ga,Mn)As*, arXiv:1205.4824 (discussed in terms of depth-dependent defect and carrier concentrations) - P. Nemec, V. Novak, N. Tesarova, E. Rozkotova, H. Reichlova, D.
Butkovicova, F. Trojanek, K. Olejnik, P. Maly, R. P. Campion, B. L.
Gallagher, J. Sinova, and T. Jungwirth,
*Establishing micromagnetic parameters of ferromagnetic semiconductor (Ga,Mn)As*, arXiv:1207.0310, with changes published as*The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As*, Nature Commun.**4**, 1422 (2013) (systematic study for Mn doping up to 13%, high-quality samples) - B. C. Chapler, S. Mack, L. Ju, T. W. Elson, B. W. Boudouris, E.
Namdas, J. D. Yuen, A. J. Heeger, N. Samarth, M. Di Ventra, R. A. Segalman,
D. D. Awschalom, F. Wang, and D. N. Basov,
*Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices*, arXiv:1207.0895 (for Mn doping of only 1.5% support an important role of a Mn-induced impurity band, whereas for even lower Be doping find metallic conduction in the valence band) - J. Kanski, I. Ulfat, L. Ilver, M. Leandersson, J. Sadowski, K.
Karlsson, and P. Pal,
*Mn induced modifications of Ga 3d photoemission from (Ga,Mn)As: evidence for long range effects*, arXiv:1207.1570 (substitutional Mn affects core levels of Ga in the vicinity) - I. Muneta, H. Terada, S. Ohya, and M. Tanaka,
*Anomalous Fermi level behavior in GaMnAs at the onset of ferromagnetism*, arXiv:1208.0575 (resonant tunneling spectroscopy for vertical stacks with GaMnAs double wells; one quantum well of various doping up to 3.2% and various thickness up to 16 nm, one fixed at 6% and 20 nm; suggest Fermi energy in impurity band, argument seems to be based on position of VB-derived QW states in thin well relative to Fermi energy in thick well) - S. Ohya, I. Muneta, Y. Xin, K. Takata, and M. Tanaka,
*Valence-band structure of ferromagnetic semiconductor (InGaMn)As*, arXiv:1208.2928 (find that valence band changes weakly with Mn doping and that the Fermi energy is in the [clean] gap, even for sample without Ga, supporting a view of physics dominated by an impurity band) - S. Zhou, Y. Wang, Z. Jiang, E. Weschke, and M. Helm,
*Ferromagnetic InMnAs on InAs Prepared by Ion Implantation and Pulsed Laser Annealing*, arXiv:1209.5865, Appl. Phys. Expr.**5**, 093007 (2012) - M. Wang, K. W. Edmonds, B. L. Gallagher, A. W. Rushforth, O.
Makarovsky, A. Patanè, R. P. Campion, C. T. Foxon, V. Novak, and T.
Jungwirth,
*High Curie temperatures at low compensation in the ferromagnetic semiconductor (Ga,Mn)As*, Phys. Rev. B**87**, 121301(R) (2013) (highest Curie temperature for smallest compensation, contradicting picture of an isolated impurity band) - J. Sadowski, J. Z. Domagala, R. Mathieu, A. Kovacs, and P. Dluzewski,
*Formation of two-dimensionally confined superparamagnetic (Mn,Ga)As nanocrystals in high-temperature annealed (Ga,Mn)As/GaAs superlattices*, J. Phys.: Condens. Matter**25**, 196005 (2013) - J. Fujii
*et al.*,*Identifying the Electronic Character and Role of the Mn States in the Valence Band of (Ga,Mn)As*, Phys. Rev. Lett.**111**, 097201 (2013) (hard x-ray spectroscopy for 1% to 13% Mn concentration; find merged valence and impurity bands for heavy doping but states of dominant Mn-d character at the Fermi energy and Fermi energy about 50 meV above the mobility edge, see Fig. 4, suggesting insulating samples [sample quality?]; additional Mn-derived states are at about 5 eV below the Fermi energy) - I. Di Marco, P. Thunström, M. I. Katsnelson, J. Sadowski, K.
Karlsson, S. Lebègue, J. Kanski, and O. Eriksson,
*Electron correlations in Mn*, Nature Commun._{x}Ga_{1-x}As as seen by resonant electron spectroscopy and dynamical mean field theory**4**, 2645 (2013) (photoemission experiments and LDA+DMFT calculations, showing strong correlations, no splitt-off impurity band, but doped holes predominantly located in the vicinity of Mn ions) - M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempasky,
T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, and V. N. Strocov,
*Unveiling the impurity band inducing ferromagnetism in magnetic semiconductor (Ga,Mn)As*, arXiv:1302.0063 (2.5% Mn doping; resonant soft x-ray ARPES; Fermi energy is in gap, for judiciously chosen photon energy stated to be sensitive to intrinsic Mn observe a flat band below the Fermi energy, interpreted as an impurity band, support bound-magnetic-polaron picture of Kaminski and Das Sarma) - O. Yastrubchak, J. Sadowski, H. Krzyzanowska, L. Gluba, J. Zuk, J. Z.
Domagala, T. Andrearczyk, and T. Wosinski,
*Electronic- and band-structure evolution in low-doped (Ga,Mn)As*, arXiv:1305.4056 (various spectroscopic methods and SQUID magnetometry; Mn doping up to 1.2%; for very weakly doped, n-type material find evidence for merging of Mn impurity band with valence band, for more strongly doped, p-type material support Fermi energy in valence-type band); O. Yastrubchak, T. Andrearczyk, J. Z. Domagala, J. Sadowski, L. Gluba, J. Zuk, and T Wosinski,*Effect of low-temperature annealing on the electronic- and band-structure of (Ga,Mn)As epitaxial layers*, arXiv:1305.4175 - M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A.
Tanaka, S. Ohya, P. N. Hai, M. Tanaka, Y. Harada, and M. Oshima,
*Electronic excitations of magnetic impurity state in diluted magnetic semiconductor (Ga,Mn)As*, arXiv:1306.1474 - M. Kobayashi, H. Niwa, Y. Takeda, A. Fujimori, Y. Senba, H. Ohashi, A.
Tanaka, S. Ohya, P.â??N. Hai, M. Tanaka, Y. Harada, and M. Oshima,
*Electronic Excitations of a Magnetic Impurity State in the Diluted Magnetic Semiconductor (Ga,Mn)As*, Phys. Rev. Lett.**112**, 107203 (2014) (RIXS) - L. Chen, F. Matsukura, and H. Ohno,
*Electric-Field Modulation of Damping Constant in a Ferromagnetic Semiconductor (Ga,Mn)As*, Phys. Rev. Lett.**115**, 057204 (2015)

For transport through magnetic systems see also Mesoscopic and nanoscopic transport

- P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M.
O. Guillen, B. Johansson, and G. A. Gehring,
*Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO*, Nature Materials**2**, 673 (2003) (grown by laser ablation, also contains ab-initio calculations) - M. S. R. Rao, S. Dhar, S. J. Welz, S. B. Ogale, D. C. Kundaliya, S. R.
Shinde, S. E. Lofland, C. J. Metting, R. Erni, N. D. Browning, and T.
Venkatesan,
*A New Ferromagnetic Insulator with Giant Magnetic Moment - Co:HfO*, cond-mat/0405378 (a vacancy-driven mechanism for magnetic ordering is suggested)_{2} - T. C. Kaspar, S. M. Heald, C. M.Wang, J. D. Bryan, T. Droubay, V.
Shutthanandan, S. Thevuthasan, D. E. McCready, A. J. Kellock, D. R. Gamelin,
and S. A. Chambers,
*Negligible magnetism in excellent structural quality Cr*, Phys. Rev. Lett._{x}Ti_{1-x}O_{2}anatase: Contrast with high-T_{C}ferromagnetism in structurally defective Cr_{x}Ti_{1-x}O_{2},**95**, 217203 (2005) (defects are important for ferromagnetism) - S. R. Shinde, S. B. Ogale, A. S. Ogale, S. J. Welz, A. Lussier,
Darshan C. Kundaliya, H. Zheng, S. Dhar, M. S. R. Rao, R. Ramesh, Y. U.
Idzerda, N. D. Browning, and T. Venkatesan,
*Percolative Ferromagnetism in Anatase Co:TiO*, cond-mat/0505265_{2} - S. Duhalde, M. F. Vignolo, C. Chiliotte, C. E. Rodríguez
Torres, L. A. Errico, A. F. Cabrera, M. Rentería, F.H.
Sánchez, and M. Weissmann,
*Appearance of room temperature ferromagnetism in Cu-doped TiO*, cond-mat/0505602_{2-delta}films - K. R. Kittilstved, W. K. Liu, and D. R. Gamelin,
*Charge Transfer Excited State Contributions to Polarity Dependent Ferromagnetism in ZnO Diluted Magnetic Semiconductors*, cond-mat/0510644 (analysis of impurity levels in ZnO:Mn and ZnO:Co, roughly agrees with Dietl for Co, but not for Mn, analysis confusing but probably correct, conclusions for ferromagnetism open for discussion) - G. Herranz, M. Basletic, M. Bibes, R. Ranchal, A. Hamzic, E. Tafra, K.
Bouzehouane, E. Jacquet, J.-P. Contour, A. Barthelemy, and A. Fert,
*Full oxide heterostructure combining a high-T*, cond-mat/0512533, Phys. Rev. B_{c}diluted ferromagnet with a high-mobility conductor - M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby,
and S. Ismat Shah,
*Effect of Reducing Atmosphere on the Magnetism of Zn*, cond-mat/0512597, Nanotechnology_{1-x}Co_{x}O Nanoparticles**17**, 2675 (2006) (oxygen vacancies necessary for room-temperature ferromagnetism) - S. Thota, T. Dutta, and J. Kumar,
*On the sol-gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders*, J. Phys.: Condens. Matter**18**, 2473 (2006) (find ferromagnetism only in Ni-doped ZnO, not in Co- or Mn-doped) - S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K.
Ziemer, C. Vittoria, and V. G. Harris,
*Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO*, J. Phys.: Condens. Matter_{2-δ}films**18**, L355 (2006) (ferromagnetism in absence of magnetic ions)**P** - L. Sangaletti, M. C. Mozzati, P. Galinetto, C. B. Azzoni, A. Speghini, M.
Bettinelli, and G. Calestani,
*Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO*, J. Phys.: Condens. Matter_{2}single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu)**18**, 7643 (2006) - S. X. Zhang, S. B. Ogale, L. F. Fu, S. Dhar, D. C. Kundaliya, W. Ramadan,
N. D. Browning, and T. Venkatesan,
*Consequences of niobium doping for the ferromagnetism and microstructure of anatase Co:TiO*, Appl. Phys. Lett._{2}films**88**, 012513 (2006), cond-mat/0601528 - S.-S. Yan, J. P. Liu, L. M. Mei, Y. F. Tian, H. Q. Song, Y. X. Chen, and
G. L. Liu,
*Spin-dependent variable range hopping and magnetoresistance in Ti*, J. Phys.: Condens. Matter_{1-x}Co_{x}O_{2}and Zn_{1-x}Co_{x}O magnetic semiconductor films**18**, 10469 (2006) (nanocrystaline and amorphous material prepared by sputtering, also contains model theory) - G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, D. H.
Kim, T.-W. Noh, A. Moewes, and T. A. Callcott,
*Clustering of impurity atoms in Co-doped anatase TiO*, J. Phys.: Condens. Matter_{2}thin films probed with soft x-ray fluorescence**18**, 4243 (2006) - A. Fouchet, W. Prellier, and B. Mercey,
*Influence of the microstructure on the magnetism of Co-doped ZnO thin films*, cond-mat/0604468, J. Appl. Phys. (2006) (pulsed laser deposition, resistivity and magnetization measurements) - D. Rubi, A. Calleja, J. Arbiol, X. G. Capdevila, M. Segarra, L. Aragones,
and J. Fontcuberta,
*Structural and magnetic properties of ZnO:TM (TM: Co,Mn) nanopowders*, cond-mat/0608014 (stress importance of defects) - O. D. Jayakumar, I. K. Gopalakrishnan, K. Shasikala, and S. K.
Kulshreshtha,
*Magnetic properties of Hydrogenated Li and Co doped ZnO nanoparticles*, cond-mat/0610145 - O. D. Jayakumar, I. K. Gopalakrishnan, C. Sudakar, R. M. Kadam, and S. K.
Kulshreshtha,
*Significant enhancement of room temperature ferromagnetism in surfactant coated polycrystalline Mn doped ZnO particles*, cond-mat/0610170 - H. Pan, J. B. Yi, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H.
Yin,
*Carbon-doped ZnO: A New Class of Room Temperature Dilute Magnetic Semiconductor*, cond-mat/0610870 (n-type and intrinsic; shows anomalous Hall effect) - S. Zhou, K. Potzger, G. Zhang, F. Eichhorn, W. Skorupa, M. Helm, and J.
Fassbender,
*Crystalline Ni nanoparticles as the origin of ferromagnetism in Ni implanted ZnO crystals*, cond-mat/0611770 - A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F.
Scheurer, J.-P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D.
Muller, and J. J. Grob,
*Paramagnetism of the Co sublattice in ferromagnetic Zn*, cond-mat/0612181_{1-x}Co_{x}O films - S. Zhou, K. Potzger, H. Reuther, K. Kuepper, W. Skorupa, M. Helm, and J.
Fassbender,
*Absence of ferromagnetism in V-implanted ZnO single crystals*, cond-mat/0612356, J. Appl. Phys. - S. Zhou, K. Potzger, H. Reuther, G. Talut, F. Eichhorn, J. von Borany, W.
Skorupa, M. Helm, and J. Fassbender,
*Crystallographically oriented magnetic ZnFe*, cond-mat/0612444, J. Phys. D: Appl. Phys._{2}O_{4}nanoparticles synthesized by Fe implantation into ZnO - C. Sudakar, P. Kharel, G. Lawes, R. Suryanarayanan, R. Naik, and V. M.
Naik,
*Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism*, J. Phys.: Condens. Matter**19**, 026212 (2007) - J. Zhang, X. Z. Li, J. Shi, Y. F. Lu, and D. J. Sellmyer,
*Structure and magnetic properties of Mn-doped ZnO thin films*, J. Phys.: Condens. Matter**19**, 036210 (2007) (grown by PLD, characterized by x-ray diffraction etc., conclude that ferromagnetism is intrinsic) - R. P. Borges, R. C. da Silva, S. Magalhaes, M. M. Cruz, and M. Godinho,
*Magnetism in Ar-implanted ZnO*, J. Phys.: Condens. Matter**19**, 476207 (2007), see also minor erratum - S. Riyadi, Muafif, A. A. Nugroho, A. Rusydi, and M. O. Tjia,
*Mn-dopant-induced effects in Zn*, J. Phys.: Condens. Matter_{1-x}Mn_{x}O compounds**19**, 476214 (2007) - K. Potzger, S. Zhou, H. Reuther, K. Kuepper, G. Talut, M.
Helm, and J. Fassbender, J. D. Denlinger,
*Suppression of secondary phase formation in Fe implanted ZnO single crystals*, Appl. Phys. Lett.**91**, 062107 (2007) - V. Sridharan, S. Banerjee, M. Sardar, S. Dhara, N. Gayathri, and V. S.
Sastry,
*Bulk ferromagnetism and large changes in photoluminescence intensity by magnetic field in beta-Ga*, cond-mat/0701232 (ferromagnetism is attributed to dilute oxygen vacancies)_{2}O_{3} - K. Ueno, T. Fukumura, H. Toyosaki, M. Nakano, and M. Kawasaki,
*Anomalous Hall effect in anatase Ti*, cond-mat/0701395_{1-x}Co_{x}O_{2}at low temperature regime - D. Rubi, J. Fontcuberta, A. Calleja, Ll. Aragones, X.G. Capdevila, and
M. Segarra,
*Reversible Ferromagnetic Switching in ZnO:(Co,Mn) Powders*, cond-mat/0701473 (clearly showing the importance of defects for ferromagnetism) - P. Sati, C. Deparis, C. Morhain, S. Schafer, and A. Stepanov,
*Antiferromagnetic interactions in single crystalline Zn1-xCoxO thin films*, cond-mat/0702402; P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, and Z. Golacki,*Magnetic Anisotropy of Co*, cond-mat/0702410^{2+}as Signature of Intrinsic Ferromagnetism in ZnO:Co - S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar,
*Ferromagnetic Curie point above room temperature in bulk ZnO*, cond-mat/0702486 (another example of "d^{0}" ferromagnetism)**P** - C. E. Rodríguez Torres, F. Golmar, A. F. Cabrera, L. A. Errico, A.
M. Mudarra Navarro, M. Rentería, F. H. Sánchez, and S. Duhalde,
*Magnetic and structural study of Cu-doped TiO*, cond-mat/0702515 (...is ferromagnetic)_{2}thin films - D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan,
T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das,
*Ferromagnetism in Fe-doped ZnO Nanocrystals: Experimental and Theoretical investigations*, cond-mat/0702525 (experiment and LSDA calculations, suggesting importance of vacancies) - S. D. Yoon, V. G. Harris, C. Vittoria, and A. Widom,
*Electronic Transport in the Oxygen Deficient Ferromagnetic Semiconducting TiO*, arXiv:0704.2211 (magnetically active Ti_{2-delta}^{2+}and Ti^{3+}ions also play a role in transport, carrier density explained by exchange-split valence band and thermal activation) - A. K Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, and S. Ismat Shah,
*Experimental studies on vacancy induced ferromagnetism in undoped TiO*, arXiv:0704.2621 (suggest Stoner splitting of Ti d-band, which resides close to Fermi energy due to presence of oxygen vacancies)_{2} - S. Banerjee, K. Rajendran, N. Gayathri, M. Sardar, S. Senthilkumar, and
V. Sengodan,
*Quenching of ferromagnetism in bulk ZnO upon Mn doping*, arXiv:0704.3541 - D.-Y. Cho, J.-M. Lee, S.-J. Oh, H. Jang, J.-Y. Kim, J.-H. Park, and A.
Tanaka,
*Influence of oxygen vacancy on the electronic structure of HfO*, arXiv:0707.2127 (vacancies induce partial occupation of Hf d-shell, but no long-range order)_{2}film - T. Dietl, T. Andrearczyk, A. Lipinska, M. Kiecana, M. Tay, and Y. Wu,
*Origin of ferromagnetism in (Zn,Co)O from magnetization and spin-dependent magnetoresistance*, arXiv:0708.2476 (experiment and theory, importance of uncompensated spins at surfaces of clusters) - T. Matsumura, D. Okuyama, S. Niioka, H. Ishida, T. Satoh, Y. Murakami, H.
Toyosaki, Y. Yamada, T. Fukumura, and M. Kawasaki,
*X-ray Anomalous Scattering of Diluted Magnetic Oxide Semiconductors: Possible Evidence of Lattice Deformation for High Temperature Ferromagnetism*, arXiv:0708.3876 - C.-F. Yu, T.-J. Lin, S.-J. Sun, and H. Chou,
*Origin of Ferromagnetism in nitrogen embedded ZnO:N thin films*, arXiv:0708.4053 (discussion in terms of BMP model) - S. Ghoshal and P. S. Anil Kumar,
*Suppression of the magnetic moment upon Co doping in ZnO thin film with an intrinsic magnetic moment*, J. Phys.: Condens. Matter**20**, 192201 (2008) - Y.-Q. Song, H.-W. Zhang, Q.-Y. Wen, L. Peng, and J. Q. Xiao,
*Direct evidence of oxygen vacancy mediated ferromagnetism of Co doped CeO*, J. Phys.: Condens. Matter_{2}thin films on Al_{2}O_{3}(0001) substrates**20**, 255210 (2008) - M. Naeem, S. K. Hasanain, S. S. Afgan, and A. Rumaiz,
*Competing effects of Cu ionic charge and oxygen vacancies on the ferromagnetism of (Zn,Co)O nanoparticles*, J. Phys.: Condens. Matter**20**, 255223 (2008) - G.-H. Ji, Z.-B. Gu, M.-H. Lu, D. Wu, S.-T. Zhang, Y.-Y.
Zhu, S.-N. Zhu, and Y.-F. Chen,
*Ferromagnetism in Mn and Sb co-doped ZnO films*, J. Phys.: Condens. Matter**20**, 425207 (2008) - F. Zhao, H. M. Qiu, L. Q. Pan, H. Zhu, Y. P. Zhang, Z. G. Guo, J. H. Yin,
X. D. Zhao, and J. Q. Xiao,
*Ferromagnetism analysis of Mn-doped CuO thin films*, J. Phys.: Condens. Matter**20**, 425208 (2008) - N. Akdogan, A. Nefedov, K. Westerholt, H. Zabel, H. W. Becker, C. Somsen,
R. Khaibullin, and L. Tagirov,
*Intrinsic room temperature ferromagnetism in Co-implanted ZnO*, arXiv:0805.0361 - N. Akdogan, A. Nefedov, H. Zabel, K. Westerholt,
H.-W. Becker, C. Somsen, S. Goek, A. Bashir, R.
Khaibullin, and L. Tagirov,
*High temperature ferromagnetism in Co-implanted TiO*, arXiv:0807.1555 (observe two phases, one ferro- and one superparamagnetic [from clusters])_{2}rutile - N. Akdogan, H. Zabel, A. Nefedov, K. Westerholt,
H.-W. Becker, S. Goek, R. Khaibullin, and L. Tagirov,
*Dose dependence of ferromagnetism in Co-implanted ZnO*, arXiv:0807.4711 - S. Zhou, Q. Xu, K. Potzger, G. Talut, R.
Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M.
Helm, H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt,
*Room temperature ferromagnetism in carbon-implanted ZnO*, arXiv:0811.3487 - G. S. Chang, E. Z. Kurmaev, D. W. Boukhvalov, L. D. Finkelstein, A.
Moewes, H. Bieber, S. Colis, and A. Dinia,
*Co and Al co-doping for ferromagnetism in ZnO:Co diluted magnetic semiconductors*, J. Phys.: Condens. Matter**21**056002 (2009) (experiment and ab-initio calculations) - M. M. Cruz, R. C. da Silva, N. Franco, and M. Godinho,
*Ferromagnetism induced in rutile single crystals by argon and nitrogen implantation*, J. Phys.: Condens. Matter**21**, 206002 (2009) (implanted TiO2) - Z. H. Zhang, X. Wang, J. B. Xu, S. Muller, C. Ronning, and Q. Li,
*Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures*, Nature Nanotechnology (2009) - S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm,
J. Fassbender, S. A. Zvyagin, J. Wosnitza, and H. Schmidt,
*Origin of magnetic moments in defective TiO*, Phys. Rev. B_{2}single crystals**79**, 113201 (2009) (oxygen-ion irradiation leads to formation of defects providing spins that can order ferromagnetically) - T. Kataoka, M. Kobayashi, Y. Sakamoto, G. S. Song, A. Fujimori, F.-H.
Chang, H.-J. Lin, D. J. Huang, C. T. Chen, T. Ohkochi, Y. Takeda, T. Okane,
Y. Saitoh, H. Yamagami, A. Tanaka, S. K. Mandal, T. K. Nath, D. Karmakar, and
I. Dasgupta,
*Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nano-particles*, arXiv:0904.1838 (10% Fe, various x-ray techniques, interpretation of ferromagnetic signal in terms of ferrimagnetism: unequal numbers of Fe^{3+}ions in different lattice positions with antiferromagnetic coupling) - S. Zhou, K. Potzger, Q. Xu, G. Talut, M. Lorenz, W. Skorupa, M. Helm, J.
Fassbender, M. Grundmann, and H. Schmidt,
*Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?*, arXiv:0907.3536 - V. Fernandes, P. Schio, A. J. A. de Oliveira, W. A. Ortiz, P. Fichtner, L.
Amaral, I. L. Graff, J. Varalda, N. Mattoso, W. H. Schreiner, and D. H.
Mosca,
*Ferromagnetism induced by oxygen and cerium vacancies above the percolation limit in CeO*, J. Phys.: Condens. Matter_{2}**22**, 216004 (2010) - M. Kobayashi, Y. Ishida, J. I. Hwang, Y. Osafune, A. Fujimori, Y.
Takeda, T. Okane, Y. Saitoh, K. Kobayashi, H. Saeki, T. Kawai, and H. Tabata,
*Indication of antiferromagnetic interaction between paramagnetic Co ions in the diluted magnetic semiconductor Zn*, arXiv:1001.0712_{1-x}Co_{x}O - X. G. Xu, H. L. Yang, Y. Wu, D. L. Zhang, S. Z. Wu, J. Miao, and Y. Jiang,
*Intrinsic Room Temperature Ferromagnetism in Boron-doped ZnO*, arXiv:1003.4423 (experiments and DFT calculations, magnetic moments are attributed to oxygen ions neighboring B-V_{Zn}pairs) - J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, and K. Paul,
*Ferromagnetism in defect-ridden oxides and related materials*, arXiv:1003.5558 (experiment and theory, spin-split defect band) - N. Akdogan, B. Rameev, S. Guler, O. Ozturk, B. Aktas, H. Zabel,
R. Khaibullin, and L. Tagirov,
*Six-fold in-plane magnetic anisotropy in Co-implanted ZnO (0001)*, arXiv:1004.4291 (conclude that Co is substituted for Zn and shows long-range order) - S. K. Srivastava, P. Lejay, B. Barbara, S. Pailhes, and G. Bouzerar,
*Magnetism without magnetic impurities in SnO2*, arXiv:1004.5001 - M. H. N. Assadi, Y. B. Zhang, M. Ionescu, P. Photongkam, and S. Li,
*Intrinsic Ferromagnetism in Eu doped ZnO*, arXiv:1006.3856 (experiments compared to DFT calculations, Eu-ion-implanted ZnO, support defect-based ferromagnetism) - M. Kapilashrami, J. Xu, K. V. Rao, L. Belova, E. Carlegrim, and M.
Fahlman,
*Experimental evidence for ferromagnetism at room temperature in MgO thin films*, J. Phys.: Condens. Matter**22**, 345004 (2010) (attributed to defects, effect strongly depends on growth conditions) - R. Escudero and R. Escamilla,
*Ferromagnetic Behavior of High Purity ZnO nanoparticles*, arXiv:1009.5641 (attributed to oxygen vacancies) - S. Chattopadhyay, S. K. Neogi, A. Sarkar, M. D. Mukadam, S. M. Yusuf,
A. Banerjee, and S. Bandyopadhyay,
*Defects induced ferromagnetism in Mn doped ZnO*, arXiv:1010.0547 (room-temperature ferromagnetism; as a function of milling time, i.e., of disorder, both the resistivity and the saturation magnetization increase) - M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, and G. Brauer,
*Hydrogen mediated ferromagnetism in ZnO single crystals*, arXiv:1104.1899 (the hydrogen leads to ferromagnetism at room temperature) - C. E. Rodríguez Torres, F. Golmar, M. Ziese, P. Esquinazi, and S.
P. Heluani,
*Evidence of defect-induced ferromagnetism in ZnFe*, arXiv:1106.3128_{2}O_{4}thin films - M. Godlewski, E. Guziewicz, M. I. Lukasiewicz, I. A. Kowalik, M.
Sawicki, B. S. Witkowski, R. Jakiela, W. Lisowski, J. W. Sobczak, and M.
Krawczyk,
*Role of interface in ferromagnetism of (Zn,Co)O films*, arXiv:1107.5188; phys. stat. solidi (b)**248**, 1596 (2011) (claim that ferromagnetic response at room temperature is due to cobalt accumulated at the ZnO/substrate interface) - T. Kataoka, Y. Yamazaki, V. R. Singh, Y. Sakamoto, A. Fujimori, Y.
Takeda, T. Ohkochi, S.-I. Fujimori, T. Okane, Y. Saitoh, H. Yamagami, A.
Tanaka, M. Kapilashrami, L. Belova, and K. V. Rao,
*Ferromagnetism in ZnO co-doped with Mn and N studied by soft x-ray magnetic circular dichroism*, arXiv:1201.0006, Appl. Phys. Lett.**99**, 132508 (2011) - P. Srivastava, S. Ghosh, B. Joshi, P. Satyarthi, P. Kumar, D. Kanjilal,
D. Bürger, S. Zhou, H. Schmidt, A. Rogalev, and F. Wilhelm,
*Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy*, J. Appl. Phys.**111**, 013715 (2012) - M. Naeem and S. K. Hasanain,
*Role of donor defects in stabilizing room temperature ferromagnetism in (Mn, Co) co-doped ZnO nanoparticles*, J. Phys.: Condens. Matter**24**, 245305 (2012) - M. Sawicki, E. Guziewicz, M. I. Lukasiewicz, O. Proselkov, I. A.
Kowalik, W. Lisowski, P. Dluzewski, A. Wittlin, M. Jaworski, A. Wolska, W.
Paszkowicz, R. Jakiela, B. S. Witkowski, L. Wachnicki, M. T. Klepka, F. J.
Luque, D. Arvanitis, J. W. Sobczak, M. Krawczyk, A. Jablonski, W.
Stefanowicz, D. Sztenkiel, M. Godlewski, and T. Dietl,
*Homogenous and heterogeneous magnetism in (Zn,Co)O*, arXiv:1201.5268 (quasi-homogeneous and modulated samples, spin-glass behavior, ferromagnetic response is attributed to Co precipitates at the film-substrate interface) - R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O.
Stupakov, A. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen,
*d0 Ferromagnetic Interface Between Non-magnetic Perovskites*, arXiv:1206.0140 (experiment compared to GGA and GGA+U calculations) - A. Rusydi, S. Dhar, A. Roy Barman, Ariando, D.-C. Qi, M. Motapothula,
J. B. Yi, I. Santoso, Y. P. Feng, K. Yang, Y. Dai, N. L. Yakovlev, J. Ding,
A. T. S. Wee, G. Neuber, M. B. H. Breese, M. Rübhausen, H. Hilgenkamp,
and T. Venkatesan,
*Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti*, arXiv:1207.3156 (ferromagnetism attributed to Ti-vacancy moments interacting through mobile carriers, based on x-ray absorption spectroscopy)_{1-x}Ta_{x}O_{2}(x~0.05) thin films - R. Karmakar, S. K. Neogi, A. Banerjee, and S. Bandyopadhyay,
*Structural, Morphological, Optical and Magnetic Property of Mn doped Ferromagnetic ZnO thin film*, arXiv:1210.4698 - S. Zhou, K. Potzger, G. Talut, J. von Borany, W. Skorupa, M.
Helm, and J. Fassbender,
*Using x-ray diffraction to identify precipitates in transition metal doped semiconductors*, arXiv:1301.0100 (why some nanocrystals might be invisible for x-ray diffraction) - T. Tietze
*et al.*,*Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study*, Sci. Rep.**5**, 8871 (2015) (magnetic volume fraction is strongly correlated with the fraction affected by grain boundaries; DFT: grain boundaries show ferromagnetic coupling) - R. J. Green, T. Z. Regier, B. Leedahl, J. A. McLeod, X. H. Xu, G. S.
Chang, E. Z. Kurmaev, and A. Moewes,
*Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1-xFex)2O3*, Phys. Rev. Lett.**115**, 167401 (2015) (RIXS)

- N. Theodoropoulou, A. F. Hebard, S. N. G. Chu, M. E. Overberg, C. R.
Abernathy, S. J. Pearton, R. G. Wilson, and J. M. Zavada,
*Magnetic Properties of Fe- and Mn-Implanted SiC*, Electrochem. Solid-State Lett.**4**G119 (2001) - M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos,
G. Agnello, and V. P. LaBella,
*Above room temperature ferromagnetism in Mn-ion implanted Si*, Phys. Rev. B**71**, 033302 (2005) - S. Dhar, L. Pérez, O. Brandt, A. Trampert, K. H. Ploog, J. Keller,
and B.
Beschoten,
*Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K*, Phys. Rev. B**72**, 245203 (2005)**P** - M. A. Scarpulla, B. L. Cardozo, W. M. Hlaing Oo, M. D. McCluskey, and
O. D. Dubon,
*Ferromagnetism in Ga*, cond-mat/0501275_{1-x}Mn_{x}P: evidence for inter-Mn exchange mediated by localized holes within a detached impurity band - Y. Shuto, M. Tanaka, and S. Sugahara,
*Magneto-optical properties of a new group-IV ferromagnetic semiconductor Ge*, cond-mat/0511328 (having maximum_{1-x}Fe_{x}grown by low-temperature molecular beam epitaxy*T*of 170K at the maximum Fe concentration of 10%)_{c} - S. Sugahara, K. L. Lee, S. Yada, and M. Tanaka,
*Precipitation of amorphous ferromagnetic semiconductor phase in epitaxially grown Mn-doped Ge thin films*, cond-mat/0511361 (attribute DMS behavior to amorphous (Ge,Mn) clusters in pure Ge matrix) - S. Sonoda, I. Tanaka, H. Ikeno, T. Yamamoto, F. Oba, T. Araki, Y.
Yamamoto, K. Suga, Y. Nanishi, Y. Akasaka, K. Kindo, and H. Hori,
*Coexistence of Mn*, J. Phys.: Condens. Matter^{2+}and Mn^{3+}in ferromagnetic GaMnN**18**, 4615 (2006), modified version of cond-mat/0511435 under new title (evidence for room-temperature ferromagnetism in (Ga,Mn)N mediated by carriers in a deep Mn-d impurity band) - S. Y. Han, J. Hite, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J.
Pearton, H. K. Choi, W. O. Lee, Y. D. Park, J. M. Zavada, and R. Gwilliam,
*Effect of Gd implantation on the structural and magnetic properties of GaN and AlN*, Appl. Phys. Lett.**88**, 042102 (2006)**P** - S. Dhara, B. Sundaravel, K. G. M. Nair, R. Kesavamoorthy, M. C.
Valsakumar, T. V. Chandrasekhar Rao, L. C. Chen, and K. H. Chen,
*Ferromagnetism in cobalt doped n-GaN*, Appl. Phys. Lett.**88**, 173110 (2006) - T. Dubroca, J. Hack, R. E. Hummel, and A. Angerhofer,
*Quasiferromagnetism in semiconductors*, Appl. Phys. Lett.**88**, 182504 (2006)**P** - P. R. Bandaru, J. Park, J. S. Lee, Y. J. Tang, L.-H. Chen, S. Jin,
S. A. Song, and J. R. O'Brien,
*Enhanced room temperature ferromagnetism in Co- and Mn-ion-implanted silicon*, Appl. Phys. Lett.**89**, 112502 (2006)**P** - R. G. Wilks, E. Z. Kurmaev, L. M. Sandratskii, A. V. Postnikov, L. D.
Finkelstein, T. P. Surkova, S. A. Lopez-Rivera, and A. Moewes,
*An x-ray emission and density functional theory study of the electronic structure of Zn*, J. Phys.: Condens. Matter_{1-x}Mn_{x}S**18**, 10405 (2006) (no ferromagnetism, but giant Zeeman effect, no information on growth, also contains DFT calculations using the supercell approach) - P. R. Stone, M. A. Scarpulla, R. Farshchi, I. D. Sharp, E. E. Haller, O.
D. Dubon, K. M. Yu, J. W. Beeman, E. Arenholz, J. D. Denlinger, and H. Ohldag,
*Mn L*, cond-mat/0604003 (grown by ion implantation and pulsed-laser melting, shows similar properties as Mn-doped GaAs)_{3,2}X-ray absorption and magnetic circular dichroism in ferromagnetic Ga_{1-x}Mn_{x}P - S. Marcet
*et al.*,*Magneto-optical spectroscopy of (Ga,Mn)N epilayers*, cond-mat/0604025 - C. Jaeger, C. Bihler, T. Vallaitis, S. T. B. Goennenwein, M. Opel, R.
Gross, and M. S. Brandt,
*Spin glass-like behavior of Ge:Mn*, cond-mat/0604041 - S. Yoshii, S. Sonoda, T. Yamamoto, T. Kashiwagi, M. Hagiwara, Y.
Yamamoto, Y. Akasaka, K. Kindo, and H. Hori,
*Evidence for Carrier-Induced High-T*, cond-mat/0604674 (Mn concentration 8.2%, room-temperature ferromagnetism, electronic localization and suppression of ferromagnetic order below 10 K); H. Hori, Y. Yamamoto, and S. Sonoda,_{c}Ferromagnetism in Mn-doped GaN film*A possible model to high T*, cond-mat/0607708 (with some theoretical discussion based on double-exchange model)_{C}ferromagnetism in Gallium Manganese Nitrides based on resonation properties of impurities in semiconductors - P. R. Stone, M. A. Scarpulla, R. Farshchi, I. D. Sharp, J. W. Beeman, K.
M. Yu, E. Arenholz, J. D. Denlinger, E. E. Haller, and O. D. Dubon,
*Mn L*, cond-mat/0607393, Proceedings of ICPS-28_{3,2}X-ray Absorption Spectroscopy And Magnetic Circular Dichroism In Ferromagnetic (Ga,Mn)P - R. Farshchi, M. A. Scarpulla, P. R. Stone, K. M. Yu, I. D. Sharp, J. W.
Beeman, H. H. Silvestri, L. A. Reichertz, E. E. Haller, and O. D. Dubon,
*Compositional tuning of ferromagnetism in Ga*, cond-mat/0608133 (material is produced by ion implantation followed by laser melting and is always found to be insulating; the acceptor gap is found to shrink with increasing_{1-x}Mn_{x}P*x*) - S. Sonoda, I. Tanaka, F. Oba, H. Ikeno, H. Hayashi, T. Yamamoto, Y. Yuba,
K. Yoshida, M. Aoki, M. Asari, Y. Akasaka, K. Kindo, and H. Hori,
*Awaking of ferromagnetism in GaMnN through control of Mn valence*, cond-mat/0608653 (conclude that Mn^{2+/3+}mixed valence is crucial for ferromagnetism in (Ga,Mn)N) - S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel,
and R. Gross,
*Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets*, cond-mat/0611241, Phys. Rev. B**74**(2006) (5% Mn, find precipitates of ferromagnetic Mn_{5}Ge_{3}, superparamagnetism, study blocking temperature); D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter,*Clustering in a precipitate free GeMn magnetic semiconductor*, cond-mat/0611245, Phys. Rev. Lett. (2006) (5% Mn, no precipitates, but clusters with higher substitutional Mn concentration, no ferromagnetic long-range order, but superparamagnetism) - A. Bonanni, M. Kiecana, C. Simbrunner, Tian Li, M. Sawicki, M.
Wegscheider. M. Quast, H. Przybylinska, A. Navarro-Quezada, A. Wolos, W.
Jantsch, and T. Dietl,
*Paramagnetic GaN:Fe and ferromagnetic (Ga,Fe)N - relation between structural, electronic, and magnetic properties*, cond-mat/0612200, Phys. Rev. B - S. Zhou, K. Potzger, G. Zhang, A. Muecklich, F. Eichhorn, N. Schell, R.
Groetzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, and D. Geiger,
*Structural and magnetic properties of Mn-implanted Si*, cond-mat/0612612, Phys. Rev. B (Mn is incorporated as MnSi_{1.7}clusters, not substitutionally) - S. H. Song, M. H. Jung, and S. H. Lim,
*Spin glass behaviour of amorphous Ge-Mn alloy thin films*, J. Phys.: Condens.Matter**19**, 036211 (2007) - J. M. Zavada, N. Nepal, C. Ugolini, J. Y. Lin, H. X. Jiang, R. Davies, J.
Hite, C. R. Abernathy, S. J. Pearton, E. E. Brown, and U. Hömmerich ,
*Optical and magnetic behavior of erbium-doped GaN epilayers grown by metal-organic chemical vapor deposition*, Appl. Phys. Lett.**91**, 054106 (2007) (very small magnetic moment per Er dopant) - M. A. Khaderbad, S. Dhar, L. Pérez, K. H. Ploog, A. Melnikov, and
A. D. Wieck,
*Effect of annealing on the magnetic properties of Gd focused ion beam implanted GaN*, Appl. Phys. Lett.**91**, 072514 (2007) - W. Pacuski, D. Ferrand, J. Cibert, J. A. Gaj, A. Golnik, P. Kossacki, S.
Marcet, E. Sarigiannidou, and H. Mariette,
*Excitonic giant Zeeman effect in GaN:Mn*, cond-mat/0703041 (find ferromagnetic hole-local moment exchange interaction)^{3+} - J. I. Hwang, Y. Osafune, M. Kobayashi, K. Ebata, Y. Ooki, Y. Ishida, A.
Fujimori, Y. Takeda, T. Okane, Y. Saitoh, K. Kobayashi, and A. Tanaka,
*Depth profile high-energy spectroscopic study of Mn-doped GaN prepared by thermal diffusion*, cond-mat/0703429 (found to be similar to MBE-grown samples; weak ferromagnetism for p-type GaN substrate) - C. Bihler, M. Kraus, M. S. Brandt, S.T.B. Goennenwein, M. Opel, M. A.
Scarpulla, R. Farshchi, and O. D. Dubon,
*Suppression of hole-mediated ferromagnetism in GaMnP by hydrogen*, arXiv:0707.2777 - P. R. Stone, J. W. Beeman, K. M. Yu, and O. D. Dubon,
*Tuning of ferromagnetism through anion substitution in Ga-Mn-pnictide ferromagnetic semiconductors*, arXiv:0707.4490 (anion substitution is found to decrease T_{c}) - W. Pacuski, P. Kossacki, D. Ferrand, A. Golnik, J. Cibert, M.
Wegscheider, A. Navarro-Quezada, A. Bonanni, M. Kiecana, M. Sawicki, and T.
Dietl,
*Observation of strong-coupling effects in a diluted magnetic semiconductor (Ga,Fe)N*, arXiv:0708.3296 - G. Mihaly, M. Csontos, S. Bordacs and I. Kezsmarki, T. Wojtowicz, X. Liu,
B. Janko, and J. K. Furdyna,
*Anomalous Hall effect in (In,Mn)Sb dilute magnetic semiconductor*, arXiv:0709.0059 - M. S. Seehra, P. Dutta, S. Neeleshwar, Y.-Y.
Chen, C. L. Chen, S. W. Chou, C. C. Chen, C.-L. Dong, and C.-L. Chang,
*Size-Controlled Ex-nihilo Ferromagnetism in Capped CdSe Quantum Dots*, Adv. Mat.**20**, 1656 (2008) (room-temperature ferromagnetism without magnetic dopants, attributed to effect of capping) - A. Ney, R. Rajaram, T. Kammermeier, V. Ney, S. Dhar, K. H. Ploog, and
S. S. P. Parkin,
*Metastable magnetism and memory effects in dilute magnetic semiconductors*, J. Phys.: Condens. Matter**20**, 285222 (2008) (ferromagnetic response is partially metastable and shows memory effects; for MBE-grown Cr:InN and Gd:GaN)**P** - A. Geresdi, A. Halbritter, M. Csontos, Sz. Csonka, G. Mihaly, T.
Wojtowicz, X. Liu, B. Janko, and J. K. Furdyna,
*Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb*, arXiv:0801.1464 - M. Vladimirova, S. Cronenberger, P. Barate, D. Scalbert, F. J. Teran, and
A. P. Dmitriev,
*Two kinds of spin precession modes in diluted magnetic semiconductors*, arXiv:0801.4756 (Kerr measurements on II-VI DMS (Cd,Mn)Te showing that some Mn spins decouple from the electron system while others do not) - S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T.
Dietl,
*Origin and control of high-temperature ferromagnetism in semiconductors*, arXiv:0804.0322 (ferromagnetism in (Zn,Cr)Te is attributed to Cr-rich inclusions) - S. D. Ganichev, S. A. Tarasenko, V. V. Bel'kov, P. Olbrich, W. Eder, D. R.
Yakovlev, V. Kolkovsky, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, and D.
Weiss,
*Spin currents in diluted magnetic semiconductors*, arXiv:0811.4327 (Mn-doped II-VI heterostructures) - O. Sancho-Juan, A. Cantarero, N. Garro, A. Cros, G. Martinez-Criado, M.
Salome, J. Susini, D. Olguin, and S. Dhar,
*X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC*, J. Phys.: Condens. Matter**21**, 295801 (2009) - M. Rovezzi, F. D'Acapito, A. Navarro-Quezada, B.
Faina, T. Li, A. Bonanni, F. Filippone, A. A. Bonapasta, and
T. Dietl,
*Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by x-ray absorption fine structure spectroscopy*, arXiv:0902.4614 (experiments and DFT) - A. Lipinska, C. Simserides, K. N. Trohidou, M. Goryca, P. Kossacki, A.
Majhofer, and T. Dietl,
*Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: Interpretation of magneto-optical measurements by Monte Carlo simulations*, arXiv:0903.0406 (experiment and theory) - W. Münzer, A. Neubauer, S. Mühlbauer, C. Franz, T. Adams, F.
Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and
C. Pfleiderer,
*Skyrmion Lattice in a Doped Semiconductor*, arXiv:0903.2587 (small-angle neutron scattering on (Fe,Co)Si, note relationship to MnSi) - O. Riss, A. Gerber, I. Ya. Korenblit, A. Suslov, M. Passacantando, and
L. Ottaviano,
*Magnetization driven metal - insulator transition in strongly disordered Ge:Mn magnetic semiconductors*, arXiv:0903.5423 - D. Wang, X. Y. Zhang, J. Wang, S. Q. Wei, W. S. Yan, and D. W.
Boukhvalov,
*Mn clusterisation in Ga1-xMnxN*, arXiv:0905.4158 (x-ray absorption spectroscopy, nanocluster formation, also DFT calculations) - E. Cuervo-Reyes, E. D. Stalder, C. Mensing, S. Budnyk, and R.
Nesper,
*Unexpected Ferromagnetism in Alkaline-Earth Silicides*, arXiv:0909.0434 - V. N. Krivoruchko, V. Yu. Tarenkov, D. V. Varyukhin, A. I. D'yachenko,
O. N. Pashkova, and V. A. Ivanov,
*Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor*, arXiv:0909.2407 (polycrystalline samples, observe hysteresis at room temperature) - S. Zhou, D. Buerger, M. Helm, and H. Schmidt,
*Anomalous Hall resistance in Ge:Mn systems with low Mn concentrations*, arXiv:0910.1981 - S. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y.
Chan, L. L. Henry, and J. F. DiTusa,
*Magnetic and thermodynamic properties of cobalt doped iron pyrite: Griffiths Phase in a magnetic semiconductor*, arXiv:0912.2960;*Kondo effect and absence of quantum interference effects in the charge transport of cobalt doped iron pyrite*, arXiv:0912.2980 - Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L.
A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A.
Yazdani, and R. J. Cava,
*Development of ferromagnetism in the doped topological insulator Bi*, Phys. Rev. B_{2-x}Mn_{x}Te_{3}**81**, 195203 (2010), see also synopsis (making a topological insulator into a diluted magnetic semiconductor by manganese doping) - W. Stefanowicz, D. Sztenkiel, B. Faina, A. Grois, M. Rovezzi, T.
Devillers, A. Navarro-Quezada, T. Li, R. Jakiela, M. Sawicki, T. Dietl, and
A. Bonanni,
*Structural and paramagnetic properties of dilute Ga*, Phys. Rev. B_{1-x}Mn_{x}N**81**, 235210 (2010) (high quality films with up to 1% Mn grown by MOVD, paramagnetic; title changed compared to preprint) - S. Zhou, D. Bürger, W. Skorupa, P. Oesterlin, M. Helm, and H.
Schmidt,
*The importance of hole concentration in establishing carrier-mediated ferromagnetism in Mn doped Ge*, Appl. Phys. Lett.**96**, 202105 (2010) - R. P. Davies, B. P. Gila, C. R. Abernathy, S. J. Pearton, and C. J.
Stanton,
*Defect-enhanced ferromagnetism in Gd- and Si-coimplanted GaN*, Appl. Phys. Lett.**96**, 212502 (2010) - A. Navarro-Quezada, W. Stefanowicz, Tian Li, B. Faina, M. Rovezzi, R.
T. Lechner, T. Devillers, F. d'Acapito, G. Bauer, M. Sawicki, T. Dietl, and A.
Bonanni,
*Embedded magnetic phases in (Ga,Fe)N: the key role of growth temperature*, arXiv:1001.5418 - C. King, J. Zemen, K. Olejník, L. Horák, J. Haigh, V.
Novák, J. Kucera, V. Holy, R. P. Campion, B. L. Gallagher, and
T. Jungwirth,
*Strain control of magnetic anisotropy in (Ga,Mn)As microbars*, arXiv:1007.2766 (experiment and theory/simulation, suggesting that the anisotropy is magnetocrystaline in origin) - Y. H. Zhang, Z. Y. Lin, F. F. Zhang, X. L. Yang, D. Li, Z. T. Chen, G.
J. Lian, Y. Z. Qian, X. Z. Jiang, T. Dai, Z. C. Wen, B. S. Han, C. D. Wang,
and G. Y. Zhang,
*Confirmation of room-temperature long range magnetic order in GaN:Mn*, arXiv:1011.3937 - B. A. Aronzon, V. V. Rylkov, S. N. Nikolaev, V. V. Tugushev, S.
Caprara, V. V. Podolskii, V. P. Lesnikov, A. Lashkul, R. Laiho, R. R. Gareev,
N. S. Perov, and A. S. Semisalova,
*Room temperature ferromagnetism and anomalous Hall effect in Si*, arXiv:1012.1172_{1-x}Mn_{x}(x approx 0.35) alloys - T. Jungwirth, V. Novak, X. Marti, M. Cukr, F. Maca, A. B. Shick, J.
Masek, P. Horodyska, P. Nemec, V. Holy, J. Zemek, P. Kuzel, I. Nemec, B. L.
Gallagher, R. P. Campion, C. T. Foxon, and J. Wunderlich,
*Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds*, Phys. Rev. B**83**, 035321 (2011), significantly changed compared to preprint arXiv:1007.0177 (experiment and theory for a new class of antiferromagnetic I-Mn-V compounds, for example LiMnAs; isostructural to LiFeAs); see also Viewpoint: R. J. Cava, Physics**4**, 7 (2011) - L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and
S. Zhou,
*Rise and fall of defect induced ferromagnetism in SiC single crystals*, Appl. Phys. Lett.**98**, 222508 (2011), also arXiv:1106.0966 (Ne^{+}irradiation, magnetic moments attributed to divacancies, note that magnetic moment per divacancy is about 18 Bohr magnetons) - M. Roever, J. Malindretos, A. Bedoya-Pinto, A. Rizzi, C. Rauch, and F.
Tuomisto,
*Tracking defect-induced ferromagnetism in GaN:Gd*, arXiv:1103.4256 (oxygen codoping helps ferromagnetism) - P. N. Hai, L. D. Anh, and M. Tanaka,
*Iron-based n-type electron-induced ferromagnetic semiconductor*, arXiv:1106.0561 (InAs doped with Fe to provide magnetic moments and codoped with Be at low growth temperature, acting as donors and leading to an n-type DMS) - M. Sawicki, T. Devillers, S. Ga{\l}\c{e}ski, C. Simserides, S.
Dobkowska, B. Faina, A. Grois, A. Navarro-Quezada, K. N. Trohidou, J. A.
Majewski, T. Dietl, and A. Bonanni,
*Origin of low-temperature magnetic ordering in Ga*, arXiv:1202.6233 (low Curie temperatures; also theory assuming Mn_{1-x}Mn_{x}N^{3+}charge state and isotropic effective exchange interaction, derive the isotropic exchange coupling from tight-binding model) - K. Zhao
*et al.*,*New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the '122' iron-based superconductors*, Nature Commun.**4**, 1442 (2013) (Ba_{1-x}K_{x}(Zn_{1-y}Mn_{y})_{2}As_{2}) - S. Stefanowicz, G. Kunert, C. Simserides, J. A. Majewski, W.
Stefanowicz, C. Kruse, S. Figge, Tian Li, R. Jakiela, K. N. Trohidou, A.
Bonanni, D. Hommel, M. Sawicki, and T. Dietl,
*Phase diagram and critical behavior of the random ferromagnet Ga*, arXiv:1306.5141_{1-x}Mn_{x}N - D. L. Binh, B. J. Ruck, F. Natali, H. Warring, H. J. Trodahl, E.-M.
Anton, C. Meyer, L. Ranno, F. Wilhelm, and A. Rogalev,
*Europium nitride: A novel diluted magnetic semiconductor*, arXiv:1306.5477 (substoichiometric with some Eu in magnetic 2+ state, hence diluted) - L. Duc Anh, P. Nam Hai, and M. Tanaka,
*Control of ferromagnetism by manipulating the carrier wavefunction in ferromagnetic semiconductor (In,Fe)As quantum wells*, arXiv:1309.5283 (n-doped material, surprisingly large exchange coupling)

- N. Naresh and R. N. Bhowmik,
*Synthesis and study of alpha-Fe1.4Ga0.6O3: An advanced Ferromagnetic Semiconductor*, arXiv:1104.1982 (ferromagnetic at room temperature, direct-gap semiconductor, gap above 2eV[?]) - S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler,
*Realization of Spin Gapless Semiconductors: The Heusler Compound Mn*, Phys. Rev. Lett._{2}CoAl**110**, 100401 (2013) (gap exists for one spin direction, metallic for the other, ferromagnetic with Curie temperature 720 K)

- T. Mizokawa and A. Fujimori,
*p-d exchange interaction for 3d transition-metal impurities in II-VI semiconductors*, Phys. Rev. B**56**, 6669 (1997) (calculate exchange interaction of various 3d impurities in ZnS and ZnSe within configuration-interaction scheme) - T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald,
*Interlayer coupling in ferromagnetic semiconductor superlattices*, Phys. Rev. B**59**, 9818 (1999) (the first paper on DMS from this group) - M. P. Kennett, M. Berciu, and R. N. Bhatt,
*Monte Carlo simulations of an impurity-band model for III-V diluted magnetic semiconductors*, Phys. Rev. B**66**, 045207 (2002) - J. Fabian, I. Zutic, and S. Das Sarma,
*Theory of spin-polarized bipolar transport in magnetic p-n junctions*, Phys. Rev. B**66**, 165301 (2002) - D. Bodea, M. Crisan, I. Grosu, and I. Tifrea,
*Non-Fermi liquid behavior of the electrical resistivity at the ferromagnetic quantum critical point*, cond-mat/0207712 - S.-R. E. Yang, J. Sinova, T. Jungwirth, Y. P. Shim, and A. H. MacDonald,
*Non-Drude optical conductivity of (III,Mn)V ferromagnetic semiconductors*, Phys. Rev. B**67**, 045205 (2003) (supercell calculation employing six-band Kohn-Luttinger Hamiltonian, Coulomb potential of Mn acceptors [with central-cell correction] and antisites, exchange with frozen, aligned Mn spins, Hartree potential, resulting in suppression of Drude peak relative to inter-valence-band peak) - P. M. Krstajic, F. M. Peeters, V. A. Ivanov, V. Fleurov, and K.
Kikoin,
*Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors*, Phys. Rev. B**70**, 195215 (2004) (this work really favors Zener kinetic exchange) - E. H. Hwang and S. Das Sarma,
*Transport properties of diluted magnetic semiconductors: Dynamical mean-field theory and Boltzmann theory*, Phys. Rev. B**72**, 035210 (2005) - G. Bouzerar, T. Ziman, and Josef Kudrnovský,
*Compensation, interstitial defects, and ferromagnetism in diluted ferromagnetic semiconductors*, Phys. Rev. B**72**, 125207 (2005) (ab-initio calculations are used to reduce the system in the presence of Mn interstitials or As antisites to an effective Heisenberg model, which is then solved by a new RPA-based approximation) - S.-S. Feng and Mogus Mochena,
*Ground-state properties and molecular theory of Curie temperature in the coherent potential approximation of diluted magnetic semiconductors*, cond-mat/0509589;*Ferromagnetism of Ga*, cond-mat/0511320_{1-x}Mn_{x}As and Weiss theory of Curie temperature in the coherent potential approximation**Q** - R. Bouzerar, G. Bouzerar, and T. Ziman,
*Why RKKY exchange integrals are inappropriate to describe ferromagnetism in diluted magnetic semiconductors*, cond-mat/0512540, Phys. Rev. B**P** - D. J. Priour, Jr. and S. Das Sarma,
*Phase Diagram of the Disordered RKKY Model in Dilute Magnetic Semiconductors*, Phys. Rev. Lett.**97**, 127201 (2006) (for the free-electron RKKY expression, in fact of more general interest than the title suggests)**P**; R. Bouzerar, G. Bouzerar, and T. Ziman,*Comment*, cond-mat/0609631 - A. K. Nguyen, R. V. Shchelushkin, and A. Brataas,
*Intrinsic Domain Wall Resistance in Ferromagnetic Semiconductors*, cond-mat/0601436 - F. Popescu, Y. Yildirim, G. Alvarez, A. Moreo, E. Dagotto,
*Critical Temperatures of a Two-Band Model for Diluted Magnetic Semiconductors*, cond-mat/0601593, Phys. Rev. B (the two bands represent the light and heavy holes, the approach is DMFT, Coulomb attraction by acceptors is not included, thereby neglecting the dominant energy of impurity states) - E. Z. Meilikhov and R. M. Farzetdinova,
*Quasi-Two Dimensional Diluted Magnetic Semiconductors with Arbitrary Carrier Degeneracy*, cond-mat/0602416 (RKKY interaction, close to Dietl's MF/VCA approach) - G. Bouzerar and T. Ziman,
*Model for vacancy-induced d*, cond-mat/0603022, Phys. Rev. Lett. (vacancies can induce magnetic moments at neighboring oxygen ions)^{0}ferromagnetism in oxide compounds - H. Raebiger, M. Ganchenkova, and J. von Boehm,
*Diffusion and clustering of substitutional Mn in (Ga,Mn)As*, see next section - M. J. Calderón and S. Das Sarma,
*On the physical origin of ferromagnetism in dilute magnetic oxides*, cond-mat/0603182 (discussing RKKY interaction and magnetic polaron percolation)**P** - V. A. Stephanovich,
*Theory of domain structure in ferromagnetic phase of diluted magnetic semiconductors near the phase transition temperature*, cond-mat/0603676 - R. G. Melko, R. S. Fishman, and F. A. Reboredo,
*A single layer of Mn in a GaAs quantum well: a ferromagnet with quantum fluctuations*, cond-mat/0604288 - R. Oszwaldowski, J. A. Majewski, and T. Dietl,
*Influence of band structure effects on domain-wall resistance in diluted ferromagnetic semiconductors*, cond-mat/0605230 - K. Kikoin and V. Fleurov,
*Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O*, cond-mat/0605242_{2} - J.-M. Tang, J. Levy, and M. E. Flatté,
*All-electrical control of single ion spins in a semiconductor*, quant-ph/0605203 (exploiting the coupling between local spins and electronic spin and*orbital*angular momenta in the ground state, some similarity to ideas for all-electric control of molecular spins) - A. K. Nguyen, H. J. Skadsem, and A. Brataas,
*Giant current-driven domain wall mobility in (Ga,Mn)As*, cond-mat/0606498 (strong spin-orbit coupling enhances the domain-wall mobility by four orders of magnitude) - G. Bouzerar, R. Bouzerar, J. Kudrnovský, and T.
Ziman,
*Comparison between ab-initio and phenomenological modeling of the exchange couplings in diluted magnetic semiconductors: the case of Zn*, cond-mat/0606523, phys. stat. sol. (LDA is used to map system onto effective Heisenberg model, then the authors' RPA-based theory is applied to study the stability of ferromagnetism)_{1-x}Cr_{x}Te - F. V. Kyrychenko and C. A. Ullrich,
*Enhanced carrier scattering rates in dilute magnetic semiconductors with correlated impurities*, cond-mat/0607177 - S.-J. Sun and H.-H. Lin,
*Softening of Spin-Wave Stiffness near the Ferromagnetic Phase Transition in Diluted Magnetic Semiconductors*, cond-mat/0607201, Euro. Phys. J. B**49**, 403 (2006) - P. Sankowski, P. Kacman, J. A. Majewski, and T. Dietl,
*Spin-dependent tunneling in modulated structures of (Ga,Mn)As*, cond-mat/0607206 (heterostructures, tight-binding and Landauer theory) - A. Singh, S. K. Das, A. Sharma, and W. Nolting,
*Spin dynamics in the diluted ferromagnetic Kondo lattice model*, cond-mat/0607633 (Zener model, RPA for interaction of local spins, very strong compensation, acceptors are electrically inert or*repel*holes, thus of limited relevance for DMS)**P** - R. Bouzerar, G. Bouzerar, and T. Ziman,
*Non-perturbative J*, cond-mat/0607640 (Zener model plus local Coulomb potential of acceptors, RPA-like treatment)_{pd}model and ferromagnetism in dilute magnets - W. Zhang, T. Dong, and A. O. Govorov,
*Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking*, cond-mat/0608284 (double quantum dot made of DMS, change in symmetry of ground state) - G. Tang and W. Nolting,
*Effects of dilution and disorder on magnetism in diluted spin systems*, cond-mat/0608418, physica status solidi (b) (Heisenberg model, supercell, Tyablikov decoupling) - C. Sliwa and T. Dietl,
*Magnitude and crystalline anisotropy of hole magnetization in (Ga,Mn)As*, cond-mat/0609128 - G. Bouzerar,
*Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga*, cond-mat/0610465_{1-x}Mn_{x}As - A. D. Giddings, T. Jungwirth, and B. L. Gallagher,
*Interlayer exchange coupling in (Ga,Mn)As based multilayers*, cond-mat/0610696, physica status solidi (c) (mean-field theory, addressing the question whether the interlayer coupling can be antiferromagnetic) - M. J. Calderon and S. Das Sarma,
*Re-entrant ferromagnetism in a generic class of diluted magnetic semiconductors*, cond-mat/0611384 (based on the interplay between RKKY in valence band and impurity band, but results are given for*x*above 10%) - N. Bulut, K. Tanikawa, S. Takahashi, and S. Maekawa,
*Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host*, cond-mat/0611641 (QMC simulations for two impurities, simple band structure) - H. G. Roberts, S. Crampin, and S. J. Bending,
*Anisotropic magnetoresistance contribution to measured domain wall resistances of in-plane magnetised (Ga,Mn)As*, cond-mat/0611780 - G. Tang and W. Nolting,
*Carrier induced ferromagnetism in diluted local-moment systems*, cond-mat/0612611 - Y. Yildirim, G. Alvarez, A. Moreo, and E. Dagotto,
*Large-Scale Monte Carlo Study of a Realistic Lattice Model for Ga*, Phys. Rev. Lett. 99, 057207 (2007) (supercomputer-based simulations, tight-binding model reducing to a 6-band KL Hamiltonian at small wave vectors, purely local hole-Mn exchange, disordered Mn positions, but no Coulomb disorder); G. Bouzerar and R. Bouzerar,_{1-x}Mn_{x}As*Comment*, arXiv:0712.3368 (claiming that the original paper used an unrealistically small value for the*pd*-exchange interaction and misrepresented experimental results); S. Barthel, G. Czycholl, and G. Bouzerar,*Origins of shortcomings in recent realistic multiband Monte-Carlo studies for GaMnAs*, arXiv:1107.4694 (further critique of the Moreo/Dagotto MC results) - A. G. Petukhov, I. Zutic, and S. C. Erwin,
*Thermodynamics of Carrier-Mediated Magnetism in Semiconductors*, Phys. Rev. Lett.**99**, 257202 (2007) (assuming bound donor states with vanishing overlap, no acceptors, and neutral magnetic impurities; temperature-driven change in free-carrier concentration leads to non-monotonic and reentrant magnetization, suggested to apply to EuO:Gd) - M. J. Schmidt, K. Pappert, C. Gould, G. Schmidt, R. Oppermann, and L. W.
Molenkamp,
*Bound-hole states in a ferromagnetic (Ga,Mn)As environment*, Phys. Rev. B**76**, 035204 (2007) (note: the arXiv entry has an incorrect reference to the published paper) - F. Popescu, C. Sen, E. Dagotto, and A. Moreo,
*Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors*, Phys. Rev. B**76**, 085206 (2007) (simple band, local Coulomb potential of magnetic acceptors [Eq. (5) is the phenomenological doping dependence], which surprisingly is found to be repulsive for some parameters, no other impurities, GaMnAs at normal dopings found to be clearly in the merged-band regime, unlike GaMnN; mostly uses DMFT, but also MC for classical impurity spins on a 4^{3}supercell) - T. Jungwirth, J. Sinova, A. H. MacDonald, B. L. Gallagher, V.
Novák, K. W. Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon,
L. Eaves, E. Olejník, J. Mašek, S.-R. Eric Yang, J.
Wunderlich, C. Gould, L. W. Molenkamp, T. Dietl, and H. Ohno,
*Character of states near the Fermi level in (Ga,Mn)As: Impurity to valence band crossover*, Phys. Rev. B**76**, 125206 (2007) (discuss the evidence for the valence-band picture for Mn doping above 2%) - R. Oszwaldowski, J. A. Majewski, and T. Dietl,
*Theory of Spin Transport Across Domain-Walls in (Ga,Mn)As*, cond-mat/0701398 - E. Dias Cabral, M. A. Boselli, A. T. da Cunha Lima, A. Ghazali
(posthumous), and I. C. da Cunha Lima,
*On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer*, cond-mat/0702053 - J. Fernandez-Rossier and R. Aguado,
*Mn-doped II-VI quantum dots: artificial molecular magnets*, cond-mat/0702139, physica status solidi (c)**3**, 3734 (2006) - B. Lee, X. Cartoixa, N. Trivedi, and R. M. Martin,
*Disorder Enhanced Spin Polarization in Diluted Magnetic Semiconductors*, cond-mat/0702567 (merged, but distinct impurity band, metallic with large effective mass)**P** - T. Dietl,
*Hole states in wide band-gap diluted magnetic semiconductors and oxides*, cond-mat/0703278 - R. S. Fishman, F. A. Reboredo, A. Brandt, and J. Moreno,
*Nature of the Perpendicular-to-Parallel Spin Reorientation in a Mn-doped GaAs Quantum Well: Canting or Phase Separation?*, cond-mat/0703436 - F. V. Kyrychenko and C. A. Ullrich,
*Memory function formalism approach to electrical conductivity and optical response of dilute magnetic semiconductors*, arXiv:0704.2061 - J. Kudrnovsky, V. Drchal, G. Bouzerar, and R. Bouzerar,
*Ordering effects in diluted magnetic semiconductors*, arXiv:0707.3079 (mapping of ab-initio results to effective models for dopant positions and magnetism; predict clustering in (Ga,Mn)As, emphasize importance of spatial disorder) - B. L. Sheu, R. C. Myers, J.-M. Tang, N. Samarth, D. D. Awschalom, P.
Schiffer, and M. E. Flatté,
*Onset of ferromagnetism in low-doped GaMnAs*, arXiv:0708.1063 - A. Moreo, Y. Yildirim, and G. Alvarez,
*Multi-Orbital Lattice Model for (Ga,Mn)As and Other Lightly Magnetically Doped Zinc-Blende-Type Semiconductors*, arXiv:0710.0577 - T. Dietl,
*Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors*, arXiv:0712.1293, J. Phys. Soc. Jpn. (review and discussion of observed localization behaviour in II-VI and III-V DMS) - C. Sliwa and T. Dietl,
*Electron-hole contribution to the apparent s-d exchange interaction in III-V diluted magnetic semiconductors*, Phys. Rev. B**78**, 165205 (2008) (highly dilute n-type and p-type DMS) - L.-F. Arsenault, B. Movaghar, P. Desjardins, and A. Yelon,
*Transport in the metallic regime of Mn doped III-V Semiconductors*, arXiv:0801.1840 (CPA);*Transport in the insulating regime of Mn doped III-V Semiconductors*, arXiv:0802.1344 (valence-band picture, say that extended states at the mobility edge dominate over variable-range hopping) - J. Chovan and I. E. Perakis,
*Femtosecond Control of the Magnetization in Ferromagnetic Semiconductors*, arXiv:0801.4641 (Lindblad formalism) - C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
*Quantum Anomalous Hall Effect in Hg*, arXiv:0802.2711_{1-y}Mn_{y}Te Quantum Wells - B. Gu, N. Bulut, and S. Maekawa,
*Effects of the crystal structure on the ferromagnetic correlations in ZnO with magnetic impurities*, arXiv:0804.3436 - M. D. Kapetanakis and I. E. Perakis,
*Spin dynamics in (III,Mn)V ferromagnetic semiconductors: the role of correlations*, arXiv:0805.1320 - M. Turek, J. Siewert, and J. Fabian,
*Electronic and optical properties of ferromagnetic GaMnAs in a multi-band tight-binding approach*, arXiv:0805.4350 - J.-M. Tang and M. E. Flatté,
*Magnetic circular dichroism from the impurity band in III-V diluted magnetic semiconductors*, arXiv:0806.1753 (based on tight-binding theory developed by the authors, conceptually based on weak-doping/impurity-band limit, calculations are done at about 2% Mn concentration) - J. Hellsvik, B. Skubic, L. Nordström, B. Sanyal, O.
Eriksson, P. Nordblad, and P. Svedlindh,
*Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study*, arXiv:0809.5187 (effective isotropic Heisenberg Hamiltonian on large supercells with exchange interaction extracted from DFT calculations by J. Kudrnovsky, Landau-Lifshitz-Gilbert equation plus noise to include temperature) - B. Gu, N. Bulut, T. Ziman, and S. Maekawa,
*Possible d*, arXiv:0812.1836^{0}ferromagnetism in MgO doped with nitrogen - C. P. Moca, B. L. Sheu, N. Samarth, P. Schiffer, B. Janko, and G. Zarand,
*Scaling Analysis of Magnetoresistance and Carrier Localization in Ga*, Phys. Rev. Lett._{1-x}Mn_{x}As**102**, 137203 (2009), arXiv:0705.2016 (use scaling theory of localization, concentrate on the*average*resistivity of cells of the size of the phase correlation length, unlike Timm, Raikh, and von Oppen, who consider the*fluctuations*)**P** - F. V. Kyrychenko and C. A. Ullrich,
*Transport and optical conductivity in dilute magnetic semiconductors*, J. Phys.: Condens. Matter**21**, 084202 (2009) (many-particle theory treating disorder and electron-electron interaction on equal footing);*Temperature-dependent resistivity of ferromagnetic GaMnAs: Interplay between impurity scattering and many-body effects*, arXiv:0906.3526 (memory-function formalism and TDDFT: scattering of carriers off magnetic fluctuations is important for DC transport) - I. Garate, J. Sinova, T. Jungwirth, and A. H. MacDonald,
*Theory of weak localization in ferromagnetic (Ga,Mn)As*, Phys. Rev. B**79**, 155207 (2009)**P** - M. Turek, J. Siewert, and J. Fabian,
*Magnetic circular dichroism in Ga*, Phys. Rev. B_{x}Mn_{1-x}As: Theoretical evidence for and against an impurity band**80**, 161201(R) (2009) (tight-binding models, conclude that both in the presence and absence of an impurity band the magnetic circular dichroism is positive so that it does not represent a conclusive test) - L.-F. Zhu and B.-G. Liu,
*Curie temperatures of cubic (Ga, Mn)N diluted magnetic semiconductors from the RKKY spin model*, J. Phys.: Condens. Matter**21**, 446005 (2009) (RKKY interaction for parabolic band, do not reference work by Prior and Das Sarma) - J. H. Jiang, Y. Zhou, T. Korn, C. Schüller, and M. W. Wu,
*Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells*, arXiv:0901.0061 (study of many possible spin relaxation mechanisms) - C.-H. Chang and T. M. Hong,
*Spin-glass-like behavior caused by Mn-rich Mn(Ga)As nanoclusters in GaAs*, arXiv:0901.0967 (carrier-mediated magnetic interaction, taking higher carrier concentration within clusters into account) - G. A. Gehring, M. R. Ahmed, and A. J. Crombie,
*Theory of magnetism with temporal disorder applied to magnetically doped ZnO*, arXiv:0901.4947 - R. Bouzerar and G. Bouzerar,
*On the reliability of recent Monte Carlo studies of dilute systems of localized spins interacting with itinerant carriers*, arXiv:0902.4722 (clarify why MC simulations for full electronic models and for effective spin-only models often do not agree, discuss shortcomings of recent MC simulations) - E. Z. Meilikhov and R. M. Farzetdinova,
*Amplification of the induced ferromagnetism in diluted magnetic semiconductor*, arXiv:0903.1726 (for Fe/(Ga,Mn)As bilayers) - E. Z. Meilikhov and R. M. Farzetdinova,
*Magnetic properties of nanosized diluted magnetic semiconductors with band splitting*, arXiv:0903.1728 (continuum model) - J. Zemen, J. Kucera, K. Olejnik, and T. Jungwirth,
*Magneto crystalline anisotropies in (Ga,Mn)As: A systematic theoretical study and comparison with experiment*, arXiv:0904.0993 - V. I. Litvinov and V. K. Dugaev,
*Room-temperature ferromagnetism in dielectric GaN(Gd)*, arXiv:0905.0500 (magnetic interaction mediated by virtual transitions between Gd d band in gap and valence band; consider rather large Gd doping,*T*smoothly goes to zero for small doping; find giant effective moments apparently due to polarization of_{c}*t*_{2}d-states of Gd in the gap, unclear where the required large number of unpaired electrons is coming from) - C. P. Moca, G. Zarand, and M. Berciu,
*Theory of optical conductivity for dilute GaMnAs*, arXiv:0906.0770**P** - K. Vyborny, J. Kucera, J. Sinova, A. W. Rushforth, B. L.
Gallagher, and T. Jungwirth,
*Microscopic mechanism of the non-crystalline anisotropic magnetoresistance in (Ga,Mn)As*, arXiv:0906.3151 - S. Mishra and S. Satpathy,
*Photoinduced magnetism in the ferromagnetic semiconductors*, arXiv:0906.5514 (applied to EuS, not diluted) - E. Nielsen and R. N. Bhatt,
*Search for Ferromagnetism in doped semiconductors in the absence of transition metal ions*, arXiv:0907.3671 (long paper: Hubbard-type model for the impurity band, magnetic order is studied using mean-field theory and exact diagonalization for small systems)**P** - M. D. Kapetanakis, I. E. Perakis, K. J. Wickey, C. Piermarocchi, and J.
Wang,
*Femtosecond Coherent Control of Spin with Light in (Ga,Mn)As ferromagnets*, arXiv:0908.0707 - A. Werpachowska and T. Dietl,
*Effect of inversion asymmetry on the intrinsic anomalous Hall effect in ferromagnetic (Ga,Mn)As*, arXiv:0910.1907 - H. Bednarski and J. Spalek,
*Physical origin of ferromagnetic interaction between impurity electrons in diluted magnetic semiconductors: Bound-magnetic-polaron molecule*, arXiv:0912.0662 (pair of BMPs) - A. Werpachowska and T. Dietl,
*Theory of spin waves in ferromagnetic (Ga,Mn)As*, Phys. Rev. B**82**, 085204 (2010); A. Werpachowska,*Loewdin calculus for multiband Hamiltonians*, arXiv:1101.5775 (using Loewdin calculus; the second reference contains details) - J. Masek, F. Maca, J. Kudrnovsky, O. Makarovsky, L. Eaves, R. P.
Campion, K. W. Edmonds, A. W. Rushforth, C. T. Foxon, B. L. Gallagher, V.
Novak, Jairo Sinova, and T. Jungwirth,
*Microscopic Analysis of the Valence Band and Impurity Band Theories of (Ga,Mn)As*, Phys. Rev. Lett.**105**, 227202 (2010) (find that the impurity band does not persist for reasonable Mn doping, for any impurity-band model; no long-range Coulomb potential of Mn acceptors, is mimicked by adjustment of p-d hybridization or Mn-d-orbital shift; no disorder [CPA], no compensation)**P** - R. Bouzerar and G. Bouzerar,
*Unified picture for diluted magnetic semiconductors*, EPL**92**, 47006 (2010) (single band, random magnetic acceptors with onsite Coulomb potential and*pd*exchange interaction, no electron-electron interaction in impurity states; interestingly, Mn in GaAs is predicted to give the highest*T*)_{x} - U. Yu, A.-M. Nili, K. Mikelsons, B. Moritz, J. Moreno, and M. Jarrell,
*Nonlocal effects on magnetism in the diluted magnetic semiconductor Ga*, arXiv:1001.1716_{1-x}Mn_{x}As - T. O. Strandberg, C. M. Canali, and A. H. MacDonald,
*Magnetic interactions of substitutional Mn pairs in GaAs*, arXiv:1001.2894 - G. Bouzerar and R. Bouzerar,
*Optical conductivity of Mn doped GaAs*, arXiv:1004.4446 (application of the theory introduced in EPL**92**, 47006 (2010), cited above)**P** - A.-M. Nili, M. A. Majidi, P. Reis, J. Moreno, and M. Jarrell,
*The effect of spin-orbit interaction and attractive Coulomb potential on the magnetic properties of Ga*, arXiv:1006.0998 (DMFT, the Coulomb interaction enhances the exchange)_{1-x}Mn_{x}As - A.-M. Nili, U. Yu, J. Moreno, D. Browne, and M. Jarrell,
*A dynamical mean-field approximation study of a tight-binding model for Ga*, arXiv:1007.4609 (discuss the optical conductivity)_{1-x}Mn_{x}As**P** - N. A. Yazdani and M. P. Kennett,
*Enhanced ferromagnetism from electron-electron interactions in double exchange type models*, arXiv:1007.4843 (for a Zener model, not specifically double exchange, mit additional Hubbard interaction in the band, this is treated in Hartree-Fock approximation, the resulting model by MC simulations) - A. Chakraborty, R. Bouzerar, and G. Bouzerar,
*Magnetic spin excitations in Mn doped GaAs: A model study*, arXiv:1010.5763, Eur. Phys. J. B**81**, 405 (2011) - E. J. R. de Oliveira, E. Dias Cabral, M. A. Boselli, and I. C. da
Cunha Lima,
*A semiquantitative approach to the impurity-band-related transport properties of GaMnAs nanolayers*, arXiv:1011.1006 (metallic vs. hopping conduction in an impurity band) - R. da Silva Neves, A. Ferreira da Silva, and R. Kishore,
*Ferromagnetism in Dilute Magnetic Semiconductors*, arXiv:1011.3658 (based on Berciu and Bhatt (2001), assumes low carrier concentration) - T. O. Strandberg, C. M. Canali, and A. H. MacDonald,
*Chern Number Spins of Mn Acceptor Magnets in GaAs*, Phys. Rev. Lett.**106**, 017202 (2011) - M. Stier, S. Henning, and W. Nolting,
*The ground state phase diagram of the diluted ferromagnetic Kondo-lattice model*, J. Phys.: Condens. Matter**23**, 276006 (2011) - C. Sliwa and T. Dietl,
*Thermodynamic and thermoelectric properties of (Ga,Mn)As and related compounds*, Phys. Rev. B**83**, 245210 (2011) (analysis of experiments, supports the valence-band picture) - C. Ertler and W. Pötz,
*Electrical control of ferromagnetism in Mn-doped semiconductor heterostructures*, arXiv:1102.2507 - T. Dietl and D. Sztenkiel,
*Reconciling results of tunnelling experiments on (Ga,Mn)As*, arXiv:1102.3267 (argue that recent tunneling experiments do not support an impurity band); see also comment arXiv:1102.4459 - M. Stier and W. Nolting,
*Curie temperatures of the concentrated and diluted Kondo-lattice model as a possible candidate to describe magnetic semiconductors and metals*, arXiv:1104.4222, Phys. Stat. Solidi b - K. M. D. Hals and A. Brataas,
*Magnetization Dissipation in the Ferromagnetic Semiconductor (Ga,Mn)As*, arXiv:1105.4148 - C. Ertler and W. Pötz,
*Bias-induced destruction of ferromagnetism and disorder effects in GaMnAs heterostructures*, arXiv:1108.2108 (GaMnAs quantum well) - K. Shen and M. W. Wu,
*Hole spin relaxation and coefficients in Landau-Lifshitz-Gilbert equation in ferromagnetic GaMnAs*, arXiv:1109.4964 - A. Werpachowska and Z. Wilamowski,
*The RKKY coupling in diluted magnetic semiconductors*, arXiv:1111.1030 (simple bands, but with finite Zeeman splitting as a parameter, no reference to RKKY theory for realistic DMS band structures) - A. Chakraborty, R. Bouzerar, S. Kettemann, and G. Bouzerar,
*Nanoscale inhomogeneities: A new path toward high Curie temperature ferromagnetism in diluted materials*, arXiv:1111.4355 (show within real-space RPA [self-consistent local RPA] that clustering of magnetic defects can dramatically enhance*T*)_{c}**P**; A. Chakraborty, P. Wenk, S. Kettemann, R. Bouzerar, and G. Bouzerar,*Spin-wave excitations in presence of nanoclusters of magnetic impurities*, arXiv:1301.4111 (extended numerical study, impurity-spin interaction is modeled by simple exponential) - M. Birowska, C. Sliwa, J. A. Majewski, and T. Dietl,
*Origin of Bulk Uniaxial Anisotropy in Zinc-Blende Dilute Magnetic Semiconductors*, Phys. Rev. Lett.**108**, 237203 (2012) (in-plane anisotropy is attributed to Mn dimers) - A. Chakraborty, P. Wenk, R. Bouzerar, and G. Bouzerar,
*Spontaneous magnetization in presence of nanoscale inhomogeneities in diluted magnetic systems*, arXiv:1209.2927 (diluted Heisenberg model with exponential separation dependence of the effective exchange interaction, selfconsistent local RPA) - S. Barthel, G. Czycholl, and G. Bouzerar,
*Effective Heisenberg exchange integrals of diluted magnetic semiconductors determined within realistic multi-band tight-binding models*, arXiv:1211.6874 (assume local pd exchange, Coulomb scattering term found to be crucial, treat other Mn dopands explicitly)

- B. K. Rao and P. Jena,
*Giant Magnetic Moments of Nitrogen Stabilized Mn Clusters and Their Relevance to Ferromagnetism in Mn Doped GaN*, Phys. Rev. Lett.**89**, 185504 (2002) - P. Mahadevan and A. Zunger,
*First-principles investigation of the assumptions underlying Model-Hamiltonian approaches to ferromagnetism of 3d impurities in III-V semiconductors*, cond-mat/0309509 - H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki, and Y. Kawazoe,
*Electronic structure and optical properties of the Co-doped anatase TiO*, Phys. Rev. B_{>2}studied from first principles**69**, 125219 (2004) (minimal supercell with one substitutional Co and zero or one oxygen vacancy, stress importance of oxygen vacancies) - S. C. Erwin and I. Zutic,
*Tailoring ferromagnetic chalcopyrites*, cond-mat/0401157, Nature Materials**3**, 410 (2004) - P. Mahadevan and A. Zunger,
*Trends in ferromagnetism, hole localization, and acceptor level depth for Mn substitution in GaN, GaP, GaAs and GaSb*, cond-mat/0409296, Appl. Phys. Lett. - T. Maitra and R. Valentí,
*Ferromagnetism in Fe-substituted spinel semiconductor ZnGa*, cond-mat/0412530, J. Phys.: Condens. Matter_{2}O_{4}**17**, 7417 (2005) (starting from band-structure calculations, no disorder) - Y.-J. Zhao, P. Mahadevan, and A. Zunger,
*Practical rules for orbital-controlled ferromagnetism of 3d impurities in semiconductors*, J. Appl. Phys.**98**, 113901 (2005) - G. M. Dalpian and S.-H. Wei,
*Electron-induced stabilization of ferromagnetism in Ga*, Phys. Rev. B_{1-x}Gd_{x}N**72**, 115201 (2005)**P** - V.I. Anisimov, M.A. Korotin, I.A. Nekrasov, A.S. Mylnikova, A.V.
Lukoyanov, J.-L. Wang, and Z. Zeng,
*The role of transition metal impurities and oxygen vacancies in the formation of ferromagnetism in Co-doped TiO*, J. Phys.: Condens. Matter_{2}**18**, 1695 (2006), cond-mat/0503625 - P. Mahadevan, J. M. Osorio-Guillen, and A. Zunger,
*Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors*, cond-mat/0504505, Appl. Phys. Lett. - T. Hynninen, H. Raebiger, A. Ayuela, and J. von Boehm,
*High Curie temperatures in (Ga,Mn)N from Mn clustering*, cond-mat/0508522 - T. Chanier, M. Sargolzaei, I. Opahle,
R. Hayn, and K. Koepernik,
*Nearest neighbor exchange in Co- and Mn-doped ZnO*, cond-mat/0511050 (*ab-initio*study showing that correlations must be included beyond the LSDA to get any agreement with experiment) - C. H. Patterson,
*Magnetic defects promote ferromagnetism in Zn*, cond-mat/0512101_{1-x}Co_{x}O - Z. Xie, W.-D. Cheng, D.-S. Wu, Y.-Z. Lan, S.-P. Huang, J.-M. Hu, and J.
Shen,
*Ab initio study of ferromagnetic semiconductor Ge*, J. Phys.: Condens. Matter_{1-x}Mn_{x}Te**18**, 7171 (2006) - S. Y. Sarkisov and S. Picozzi,
*Transition-metal doping of semiconducting chalcopyrites: half-metallicity and magnetism*, J. Phys.: Condens. Matter**19**, 016210 (2006) - H. Raebiger, M. Ganchenkova, and J. von Boehm,
*Diffusion and clustering of substitutional Mn in (Ga,Mn)As*, cond-mat/0603135 (energy barriers from ab-initio calculations, Monte Carlo simulation of annealing)**P** - A. Svane, N. E. Christensen, L. Petit, Z. Szotek, and W. M. Temmerman,
*Electronic structure of rare-earth impurities in GaAs and GaN*, cond-mat/0603288 (find weak exchange interaction between rare earth spins and both CB electrons and VB holes)**P** - P. Gopal and N. A. Spaldin,
*Magnetic interactions in transition metal doped ZnO: An abinitio study*, cond-mat/0605543 - N. Tandon, G. P. Das, and A. Kshirsagar,
*Electronic structure of Diluted Magnetic Semiconductors Ga*, cond-mat/0606061 (32-atom supercell)_{1-x}Mn_{x}N and Ga_{1-x}Cr_{x}N - L. Petit, T. C. Schulthess, A. Svane, W. M. Temmerman, Z. Szotek, and A.
Janotti,
*Valency Configuration of Transition Metal Impurities in ZnO*, cond-mat/0606417, J. Electronic Materials**35**, 556 (2006) (SIC-LSDA) - J. Masek, J. Kudrnovsky, F. Maca, J. Sinova, A. H. MacDonald, R. P.
Campion, B. L. Gallagher, and T. Jungwirth,
*Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors*, cond-mat/0609158 (investigation of ternary compounds based on both TB and ab-initio calculations) - J. Masek, J.Kudrnovsky, F. Maca, B. L. Gallagher, R. P. Campion, D. H.
Gregory, and T. Jungwirth,
*Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As*, cond-mat/0609184 (proposal based partly on ab-initio calculations) - X. Du, Q. Li, H. Su, and J. Yang,
*Electronic and magnetic properties of V-doped anatase TiO*, cond-mat/0612206_{2}from first principles - J. L. Xu and M. van Schilfgaarde,
*Optimally Designed Digitally-Doped Mn:GaAs*, cond-mat/0612411 (predicting*T*above room temperature for special superlattice_{c}**k**vectors of delta-doped layers) - Q. Y. Wu, Z. G. Huang, R. Wu, and L. J. Chen,
*Cu-doped AlN: a dilute magnetic semiconductor free of magnetic cations from first-principles study*, J. Phys.: Condens. Matter**19**, 056209 (2007) - B. Belhadji, L. Bergqvist, R. Zeller, P. H. Dederichs, K. Sato, and H.
Katayama-Yoshida,
*Trends of exchange interactions in dilute magnetic semiconductors*, J. Phys.: Condens. Matter**19**, 436227 (2007) (detailed discussion of various exchange mechanisms based on CPA and ab-initio calculations) - M. Weissmann and L. A. Errico,
*The role of vacancies, impurities and crystal structure in the magnetic properties of TiO*, cond-mat/0702530_{2} - J. Kudrnovsky, G. Bouzerar, and I. Turek,
*Relation of Curie temperature and conductivity: (Ga,Mn)As alloy as a case study*, arXiv:0708.3921 - L. Liu, P. Y. Yu, Z. Ma, and S. S. Mao,
*Ferromagnetism in GaN:Gd: A Density Functional Theory Study*, Phys. Rev. Lett.**100**, 127203 (2008) (*pd*coupling much stronger than*sd*coupling, coupling to*f*orbitals always weak) - C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and S. Sanvito,
*Impurity-Ion pair induced high-temperature ferromagnetism in Co-doped ZnO*, arXiv:0801.4945 (approximate SIC scheme) - N. Sanchez, S. Gallego, and M. C. Munoz,
*Magnetic states at the Oxygen surfaces of ZnO and Co-doped ZnO*, arXiv:0804.3937 - A. Droghetti, C. D. Pemmaraju, and S. Sanvito,
*Predicting d*, arXiv:0807.4184^{0}magnetism - K.-W. Lee, V. Pardo, and W. E. Pickett,
*Anion Vacancy Driven Magnetism in Superconducting alpha-FeSe*, arXiv:0808.1733 (note relation to both DMS and Fe-based superconductors)_{1-x} - L.-J. Shi, L.-F. Zhu, Y.-H. Zhao, and B.-G. Liu,
*Nitrogen defects and ferromagnetism of Cr-doped AlN diluted magnetic semiconductor from first principles*, arXiv:0810.5048 (FLAPW study of 72-ion supercells containing at most two defects, nitrogen vacancies found to carry magnetic moments and suggested to be important for high-temperature ferromagnetims) - J. Ohe, Y. Tomoda, N. Bulut, R. Arita, K.
Nakamura, and S. Maekawa,
*Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors*, arXiv:0812.0430 - H. Ebert and S. Mankovsky,
*A new scheme to calculate the exchange tensor and its application to diluted magnetic semiconductors*, arXiv:0812.1145 (exchange interaction between two local moments) - Y. Q. Song, H. W. Zhang, Q. H. Yang, Y. L. Liu, Y. X. Li, L. R. Shah, H.
Zhu, and J. Q. Xiao,
*Electronic structure and magnetic properties of Co-doped CeO2: based on first principle calculation*, J. Phys.: Condens. Matter**21**, 125504 (2009) (oxygen vacancies are important) - D. Kim, J. Hong, Y. R. Park, and K. J. Kim,
*The origin of oxygen vacancy induced ferromagnetism in undoped TiO2*, J. Phys.: Condens. Matter**21**, 195405 (2009) - A. Stroppa and G. Kresse,
*Unraveling the Jahn-Teller effect in Mn doped GaN using the Heyd-Scuseria-Ernzerhof hybrid functional*, arXiv:0904.2140, Phys. Rev. B (also comment on difference to Mn in GaAs) - A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian,
*Surface magnetization in non-doped ZnO nanostructures*, arXiv:0904.4147 (magnetism is attributed to extended defects such as surfaces and grain boundaries) - B. J. Nagare, S. Chacko, and D. G. Kanhere,
*Ferromagnetism in Carbon doped Zinc Oxide Systems*, arXiv:0905.0366 (clusters and solid) - R. Cherian, P. Mahadevan, and C. Persson,
*Trends in Ferromagnetism in Mn doped dilute III-V alloys from a density functional perspective*, arXiv:0905.1762 - X. Jia, M. Qin, and W. Yang,
*Magnetism in Cr-doped ZnS: Density-functional theory studies*, arXiv:0910.2346 - V. Ferrari, A. M. Llois, and V. Vildosola,
*Co-doped Ceria: Tendency towards ferromagnetism driven by oxygen vacancies*, arXiv:0911.1959 (vacancies are found to be required for cobalt-spin polarization) - C. Echeverría-Arrondo, J. Pérez-Conde, and A. Ayuela,
*Antiferromagnetic order in (Ga,Mn)N nanocrystals*, arXiv:1003.0599 - N. Gonzalez Szwacki, J. A. Majewski, and T. Dietl,
*Aggregation and magnetism of Cr, Mn, and Fe cations in GaN*, arXiv:1011.5968 - K. W. Lee and C. E. Lee,
*Intrinsic Impurity-Band Stoner Ferromagnetism in C*, Phys. Rev. Lett._{60}H_{n}**106**, 166402 (2011) (LDA) - R. Grau-Crespo and U. Schwingenschlogl,
*The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2*, J. Phys.: Condens. Matter**23**, 334216 (2011) - F. V. Kyrychenko and C. A. Ullrich,
*Response properties of III-V dilute magnetic semiconductors: interplay of disorder, dynamical electron-electron interactions and band-structure effects*, arXiv:1101.5418 (**k.p**theory with implicit charge and spin disorder, use TDDFT to describe electron-electron interactions, Fermi energy in the valence band, calculate IR conductivity for (Ga,Mn)As, agreement with experiments) - O. Volnianska and P. Boguslawski,
*High spin states of cation vacancies in GaP, GaN, AlN, BN, ZnO and BeO: A first principles study*, arXiv:1104.4420 (GGA [Quantum Espresso code], cation vacancies in III-V are found to be triple acceptors, in II-VI double acceptors; discussion of possible charge states) - S. K. Pandey and R. J. Choudhary,
*Effect of non-magnetic impurities on the magnetic states of anatase TiO*, arXiv:1106.0794_{2} - M. Moreno and K. H. Ploog,
*Phase-separated high-temperature-annealed (Ga,Mn)As: A negative charge-transfer-energy material*, arXiv:1108.1166 - M. Fhokrul Islam and C. M. Canali,
*Magnetic properties of Mn impurities on GaAs (110) surfaces*, arXiv:1108.3440 - S. Mankovsky, S. Polesya, S. Bornemann, J. Minár, F. Hoffmann, C.
H. Back, and H. Ebert,
*Spin-orbit coupling effect in (Ga,Mn)As films: anisotropic exchange interactions and magnetocrystalline anisotropy*, arXiv:1108.5870 - A. N. Andriotis and M. Menon,
*The synergistic character of the defect-induced magnetism in diluted magnetic semiconductors and related magnetic materials*, J. Phys.: Condens. Matter**24**, 455801 (2012) (essentially picture of bound magnetic polarons, but based on ab-initio calculations) - V. Fleurov, K. Kikoin, and A. Zunger,
*The Nature of the magnetism-promoting hole state in the prototype magnetic semiconductor GaAs: Mn*, arXiv:1208.2811 (support an impurity-band mechanism, where the impurity band has merged with the valence band but the states retain strong impurity-band character; motivated by experiments of the Furdyna group) - A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. Van de Walle,
*Dual behavior of excess electrons in rutile TiO2*, arXiv:1212.5949 (free electrons coexist in the conduction band with localized small polarons, reconciling transport experiments on the one hand and optical and spin-resonance experiments on the other; polarons are bound to shallow donors) - K. Z. Milowska and M. Wierzbowska,
*Hole sp3-character and delocalization in (Ga,Mn)As*, arXiv:1302.5282 (DFT with SIC, up to 3% Mn substitution, supercell [for 3% with a single Mn ion!]; support valence-band picture) - R. Nelson, T. Berlijn, J. Moreno, M. Jarrell, and W. Ku,
*What is the Valence of Mn in Ga1-xMnxN?*, Phys. Rev. Lett.**115**, 197203 (2015) (LDA +*U*, single-Mn supercell; find valence 2+, i.e.,*d*^{5}, but the Mn spin is reduced from 5 to 4 Bohr magnetons; also discuss an effective*d*^{4}picture useful for the description of local properties)

- F. Natali, B. Ruck, J. Trodahl, D. L. Binh, S. Vezian, B. Damilano, Y.
Cordier, F. Semond, and C. Meyer,
*The role of magnetic polarons in ferromagnetic GdN*, arXiv:1210.3441

- J. E. Hirsch,
*Overlooked contribution to the Hall effect in ferromagnetic metals*, Phys. Rev. B**60**, 14787 (1999); E. M. Chudnovsky,*Theory of spin Hall effect*, arXiv:0709.0725; J. E. Hirsch,*Comment on Theory of spin Hall effect*, arXiv:0709.1280 (Drude-type theory, two independent but essentially equivalent approaches) - L. W. Molenkamp, G. Schmidt, and G. E. W. Bauer,
*Rashba Hamiltonian and electron transport*, Phys. Rev. B**64**, 121202(R) (2001) (pedagogical discussion of velocity operator/current for Rashba spin-orbit coupling, application to tunneling in Rashba/FM structure)**P** - S. D. Ganichev, E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M.
Sollinger, D. Weiss, W. Wegscheider, and W. Prettl,
*Spin-galvanic effect*, Nature**417**, 153 (2002) - C. Wu and S.-C. Zhang,
*Dynamic Generation of Spin-Orbit Coupling*, Phys. Rev. Lett.**93**, 036403 (2004) - C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D.
D. Awschalom,
*Observation of spin Coulomb drag in a two-dimensional electron gas*, Nature**437**, 1330 (2005) - D. Xiao, J. Shi, and Q. Niu,
*Berry Phase Correction to Electron Density of States in Solids*, Phys. Rev. Lett.**95**, 137204 (2005) (show that Liouville's theorem is violated in a solid in the presence of Berry curvature, if one defines the phase-space volume in the "naive" way)**P**; C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, and P. C. Stichel,*Comment*, Phys. Rev. Lett.**96**, 099701 (2006); D. Xiao, J. Shi, and Q. Niu,*Reply*, Phys. Rev. Lett.**96**, 099702 (2006) - C. L. Kane and E. J. Mele,
*Quantum Spin Hall Effect in Graphene*, Phys. Rev. Lett.**95**, 226801 (2005) - N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura,
*Disorder effects in the AHE induced by Berry curvature*, cond-mat/0502426 - J. D. Walls, J. Huang, R. M. Westervelt, and E. J. Heller,
*Multiple Scattering Theory for Two-dimensional Electron Gases in the Presence of Spin-Orbit Coupling*, cond-mat/0507528 - A. V. Shytov, E. G. Mishchenko, and B. I. Halperin,
*Small-angle impurity scattering and the spin Hall conductivity in 2D systems*, cond-mat/0509702 (semiclassical Boltzmann approach, detailed technical discussion) - P. L. Krotkov and S. Das Sarma,
*The Intrinsic Spin Hall Conductivity in a Generalized Rashba Model*, cond-mat/0510114 (shows that the spin Hall effect does not vanish in the presence of disorder for nonparabolic band structures) - P. Wölfle and K. A. Muttalib,
*Anomalous Hall effect in ferromagnetic disordered metals*, cond-mat/0510481 - S. Adam, M. Kindermann, S. Rahav, and P. W. Brouwer,
*Mesoscopic anisotropic magnetoconductance fluctuations in ferromagnets*, cond-mat/0512287 - J. Cumings, L. S. Moore, H. T. Chou, K. C. Ku, S. A. Crooker, N. Samarth,
and D. Goldhaber-Gordon,
*A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System*, cond-mat/0512730 (experiments showing a surprisingly large AHE in paramagnetic 2DEG, probably due to skew scattering) - A. L. Efros and E. I. Rashba,
*Theory of electric dipole spin resonance in a parabolic quantum well*, Phys. Rev. B**73**, 165325 (2006) (one can manipulate the electron spin by an AC*electric*field) - A. Punnoose,
*Magnetoconductivity in the presence of Bychkov-Rashba spin-orbit interaction*, App. Phys. Lett.**88**, 252113 (2006) - J. Shi and Q. Niu,
*Attractive electron-electron interaction induced by geometric phase in a Bloch band*, cond-mat/0601531 (very interesting idea: electrons can attract in the p-wave channel due to a nontrival geometric phase in k-space) - V. M. Galitski, A. A. Burkov, and S. Das Sarma,
*Boundary conditions for spin diffusion*, cond-mat/0601677 - R. Shindou and L. Balents,
*Artificial electric field in Fermi Liquids*, cond-mat/0603089 (generalize the Sundaram/Niu idea of quasi-magnetic fields in k-space due to Berry curvature to include a quasi-electric field, which stems from the*frequency*dependence of eigenvectors, i.e., from the interaction) - E. M. Hankiewicz, G. Vignale, and M. Flatté,
*Side jump as an intrinsic spin Hall effect*, cond-mat/0603144 - H.-A. Engel, E. I. Rashba, and B. I. Halperin,
*Theory of Spin Hall Effects*, cond-mat/0603306, in*Handbook of Magnetism and Advanced Magnetic Materials*, Vol. 5 (Wiley) - H.-T. Yang and C. Liu,
*The description of spin transport and precession in spin-orbit coupling systems and a general equation of continuity*, cond-mat/0604320 - P. Kleinert and V. V. Bryksin,
*Theory of spin-Hall transport of heavy holes in semiconductor quantum wells*, cond-mat/0604539 (steady-state spin Hall current is found to vanish in both pure and disordered infinite systems, ac spin Hall current is possible) - J. Schliemann,
*Theoretical study of interacting hole gas in p-doped bulk III-V semiconductors*, cond-mat/0604585, Phys. Rev. B (spherical approximation for the valence band, Hartree-Fock theory) - D. Culcer and Q. Niu,
*Geometrical phase effects on the Wigner distribution of Bloch electrons*, cond-mat/0605528 (generalization of previous work on Berry-phase effects in k-space to general mixed states, using a density-matrix approach) - S. Onoda, N. Sugimoto, and N. Nagaosa,
*Intrinsic vs. extrinsic anomalous Hall effect in ferromagnets*, cond-mat/0605580 (unified theory encompassing both) - A. Rebei and O. Heinonen,
*Spin currents in the Rashba model in the presence of non-uniform fields*, cond-mat/0605582 (using a SU(2) gauge theory) - V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D.
Awschalom,
*Generating Spin Currents in Semiconductors with the Spin Hall Effect*, cond-mat/0605672 (experimental paper, GaAs structures, Kerr microscopy) - P. Mitra, A. F. Hebard, K. A. Muttalib, and P. Wölfle,
*Weak localization correction to the anomalous Hall effect in polycrystalline Fe films*, cond-mat/0606215 (experiment and theoretical interpretation) - P. A. Horvarthy,
*Anomalous Hall Effect in non-commutative mechanics*, cond-mat/0606472 (short and clear set of notes on semiclassical dynamics in the presence of a Berry curvature) - E. Ya. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe,
*Ultrafast extrinsic spin-Hall currents*, cond-mat/0606725, Solid State Commun.**139**, 439 (2006) (Theory related to Hui Zhao's observation of optically generated spin Hall and inverse spin Hall effects) - S. Murakami,
*Quantum Spin Hall Effect and Diamagnetism in Bismuth*, cond-mat/0607001 (theoretical prediction) - N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev, and J.
Sinova,
*Anomalous Hall effect in 2D Dirac band: link between Kubo-Streda formula and semiclassical Boltzmann equation approach*, cond-mat/0608682 (shows equivalence of a suitable semiclassical description and microscopic perturbation theory in a more general model, not limited to relativistic electrons)**P** - R. Winkler, U. Zülicke, and J. Bolte,
*Oscillatory multiband dynamics of free particles: Ubiquity of Zitterbewegung effects*, cond-mat/0609005 - H.-A. Engel, E. I. Rashba, and B. I. Halperin,
*Out-of-plane spin polarization from in-plane electric and magnetic fields*, cond-mat/0609078 - S. Y. Liu, N. J. M. Horing, and X. L. Lei,
*Anomalous Hall effect in Rashba two-dimensional electron systems based on narrow-band semiconductors: side-jump and skew scattering mechanisms*, cond-mat/0609412 - P. A. Horvathy,
*Non-commutative mechanics, in mathematical & in condensed matter physics*, cond-mat/0609571 (applied to the spin Hall and related effects, contains a brief history)**P** - B. Liu, J. Shi, W. Wang, H. Zhao, D. Li, S. Zhang, Q. Xue, and D. Chen,
*Experimental Observation of the Inverse Spin Hall Effect at Room Temperature*, cond-mat/0610150 - J. Bruening, V. Geyler, and K. Pankrashkin,
*On the number of bound states for weak perturbations of spin-orbit Hamiltonians*, math-ph/0611080 (...which is infinite for certain local weak perturbations) - U. Zülicke and A. I. Signal,
*Rashba interferometers: Spin-dependent single and two-electron interference*, math-ph/0701065 - M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly,
*Thermal Spin-Transfer Torque*, cond-mat/0701163 - N. Hatano, R. Shirasaki, and H. Nakamura,
*Non-Abelian gauge field theory of the spin-orbit interaction and a perfect spin filter*, quant-ph/0701076 - W. Yao, A. H. MacDonald, and Q. Niu,
*Optical Control of Topological Quantum Transport in Semiconductors*, quant-ph/0702346 - M. Pletyukhov and S. Konschuh,
*Charge and spin density response functions of the clean two-dimensional electron gas with Rashba spin-orbit coupling at finite momenta and frequencies*, arXiv:0705.2419 (coupled spin and charge response etc.) - V. A. Zyuzin, P. G. Silvestrov, and E. G. Mishchenko,
*Spin-Hall edge spin polarization in a ballistic 2D electron system*, arXiv:0705.2424 - N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D.
Awschalom,
*Drift and Diffusion of Spins Generated by the Spin Hall Effect*, arXiv:0706.4273 (Kerr microscopy) - E. M. Hankiewicz and G. Vignale,
*"Phase Diagram" of the Spin Hall Effect*, arXiv:0707.2251 - J. Wang, B.-F. Zhu, and R.-B. Liu,
*Theory of optical effects of pure spin currents in semiconductors*, arXiv:0708.0881 - D. Culcer and R. Winkler,
*Generation of spin currents and spin densities in systems with reduced symmetry*, arXiv:0708.4009 (low symmetry makes the spin-current response more complex) - D. Culcer and R. Winkler,
*On the nature of steady states of spin distributions in the presence of spin-orbit interactions*, arXiv:0710.5260 - K. A. Muttalib and P. Wölfle,
*Disorder and temperature dependence of the Anomalous Hall Effect in thin ferromagnetic films: Microscopic model*, arXiv:0710.5416 - T. S. Nunner, G. Zarand, and F. von Oppen,
*Anomalous Hall effect in a two dimensional electron gas with magnetic impurities*, arXiv:0711.3415 - A. A. Kovalev, K. Vyborny, and J. Sinova,
*Hybrid skew scattering regime of the anomalous Hall effect in Rashba systems: unifying Keldysh, Boltzmann, and Kubo formalisms*, arXiv:0803.1226 - D. Venkateshvaran, W. Kaiser, A. Boger, M. Althammer, M. S. Ramachandra
Rao, S. T. B. Goennenwein, M. Opel, and R. Gross,
*Anomalous Hall Effect in Magnetite: Universal Scaling Relation Between Hall and Longitudinal Conductivity in Low-Conductivity Ferromagnets*, arXiv:0805.1120 - N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D.
Awschalom,
*Time-resolved Dynamics of the Spin Hall Effect*, arXiv:0806.0019 - P. S. Eldridge, W. J. H. Leyland, J. D. Mar, P. G. Lagoudakis, R. Winkler,
O. Z. Karimov, M. Henini, D. Taylor, R. T. Phillips, and R. T. Harley,
*Absence of the Rashba effect in undoped asymmetric quantum wells*, arXiv:0807.4845 (somewhat confusing argument) - Yu. V. Pershin and M. Di Ventra,
*Frequency doubling and memory effects in the Spin Hall Effect*, arXiv:0812.4325 - D. M. Edwards and O. Wessely,
*The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire*, J. Phys.: Condens. Matter**21**, 146002 (2009) - D. Culcer,
*Semiclassical spin transport in spin-orbit-coupled systems*, arXiv:0904.1999 (contains review) - M. Trushin, K. Vyborny, P. Moraczewski, J. Schliemann, and
T. Jungwirth,
*Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities*, arXiv:0904.3785 - M. S. Garelli and J. Schliemann,
*Landauer-Büttiker Study of the Anomalous Hall Effect*, arXiv:0907.0110 - D. Culcer, E. M. Hankiewicz, G. Vignale, and R. Winkler,
*Side-jumps in the spin-Hall effect: construction of the Boltzmann collision integral*, arXiv:0910.1596 - Y. Shiomi, Y. Onose, and Y. Tokura,
*Effect of scattering on intrinsic anomalous Hall effect investigated by Lorenz ratio*, Phys. Rev. B**81**, 054414 (2010) (in transition metals) - A. A. Kovalev, J. Sinova, and Y. Tserkovnyak,
*Anomalous Hall Effect in Disordered Multiband Metals*, Phys. Rev. Lett.**105**, 036601 (2010) - E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A.
Crowell,
*Electrical Measurement of the Direct Spin Hall Effect in Fe/In*, Phys. Rev. Lett._{x}Ga_{1-x}As Heterostructures**105**, 156602 (2010); see also J. Sinova,*Viewpoint: Spin Hall effect goes electrical*, Physics**3**, 82 (2010) - C. Gorini, P. Schwab, R. Raimondi, and A. L. Shelankov,
*Non-Abelian gauge fields in the gradient expansion: generalized Boltzmann and Eilenberger equations*, arXiv:1003.5763 (gauge-theoretical, semiclassical description of the spin Hall effect) - P. Schwab, R. Raimondi, and C. Gorini,
*Inverse Spin Hall Effect and Anomalous Hall Effect in a Two-Dimensional Electron Gas*, arXiv:1003.6018 (2DEG in GaAs, Rashba and Dresselhaus terms, show that the two effects in the title and the spin Hall effect are not trivially related) - S. Chesi and D. Loss,
*RKKY interaction in a disordered two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings*, arXiv:1007.3506 - B. Gu, J.-Y. Gan, N. Bulut, T. Ziman, G.-Y. Guo, N. Nagaosa, and
S. Maekawa,
*Quantum Renormalization of the Spin Hall Effect*, arXiv:1007.3821 (spin-orbit interaction is strongly renormalized by correlation effects for Fe impurities in Au) - J. Wunderlich, B. G. Park, A. C. Irvine, L. P. Zarbo, E. Rozkotova, P.
Nemec, V. Novak, J. Sinova, and T. Jungwirth,
*Spin Hall effect transistor*, arXiv:1008.2844 (propose, demonstrate, and model such a device) - L. K. Werake, B. A. Ruzicka, and H. Zhao,
*Observation of Intrinsic Inverse Spin Hall Effect*, Phys. Rev. Lett.**106**, 107205 (2011) (time resolved measurement, the inverse spin Hall response sets in on a time scale much shorter than the scattering time) - C. W. Sandweg, Y. Kajiwara, A. V. Chumak, A. A. Serga, V. I. Vasyuchka,
M. B. Jungfleisch, E. Saitoh, and B. Hillebrands,
*Spin Pumping by Parametrically Excited Exchange Magnons*, Phys. Rev. Lett.**106**, 216601 (2011) - T. Liu and G. Vignale,
*Electric Control of Spin Currents and Spin-Wave Logic*, Phys. Rev. Lett.**106**, 247203 (2011) - X. Liu, X.-J. Liu, and J. Sinova,
*Spin dynamics in the strong spin-orbit coupling regime*, Phys. Rev. B**84**, 035318 (2011) - J. Weischenberg, F. Freimuth, J. Sinova, S. Blügel, and Y.
Mokrousov,
*Ab Initio Theory of the Scattering-Independent Anomalous Hall Effect*, Phys. Rev. Lett.**107**, 106601 (2011) - M. Ge, T. F. Qi, O. B. Korneta, D. E. De Long, P. Schlottmann, W. P.
Crummett, and G. Cao,
*Lattice-Driven Magnetoresistivity and Metal-Insulator Transition in Single-Layered Iridates*, arXiv:1106.2381 - H. Johannesson, D. F. Mross, and E. Eriksson,
*Two-Impurity Kondo Model: Spin-Orbit Interactions and Entanglement*, arXiv:1108.1817 (RKKY in presence of Rashba and Dresselhaus spin-orbit coupling) - A. Shitade and N. Nagaosa,
*A unified theory of anomalous Hall effect in ferromagnetic metals*, arXiv:1109.5463 - R. Raimondi, P. Schwab, C. Gorini, and G. Vignale,
*Spin-orbit interaction in a two-dimensional electron gas: a SU(2) formulation*, arXiv:1110.5279 (spin Hall effect) - L. Isaev, D. F. Agterberg, and I. Vekhter,
*Kondo effect in the presence of spin-orbit coupling*, arXiv:1112.5875 - B. Gu, T. Ziman, and S. Maekawa,
*Theory of the spin Hall effect, and its inverse, in a ferromagnetic metal near the Curie temperature*, Phys. Rev. B**86**, 241303(R) (2012) - K. Olejnik, J. Wunderlich, A. C. Irvine, R. P. Campion, V. P. Amin,
J. Sinova, and T. Jungwirth,
*Spin Hall transistor with electrical spin injection*, arXiv:1202.0881 (experiment and modeling) - T. Kernreiter, M. Governale, and U. Zülicke,
*Carrier-density-controlled anisotropic spin susceptibility of two-dimensional hole systems*, arXiv:1207.4548 (susceptibility of strongly hole-doped semiconductor quantum well) - E. I. Rashba,
*Quantum nanostructures in strongly spin-orbit coupled two-dimensional systems*, arXiv:1209.0828 - O. P. Sushkov, A. I. Milstein, M. Mori, and S. Maekawa,
*Does the side jump effect exist?*, arXiv:1211.2372 (claim that it is much smaller than previously thought) - X. Bi, P. He, E. M. Hankiewicz, R. Winkler, G. Vignale, and D. Culcer,
*Anomalous spin precession and spin Hall effect in semiconductor quantum wells*, arXiv:1212.6262 - H. Kurebayashi, Jairo Sinova, D. Fang, A. C. Irvine, J. Wunderlich, V.
Novak, R. P. Campion, B. L. Gallagher, E. K. Vehstedt, L. P. Zarbo, K.
Vyborny, A. J. Ferguson, and T. Jungwirth,
*Observation of a Berry phase anti-damping spin-orbit torque*, arXiv:1306.1893 - M. Weiler,
*et al.*,*Experimental test of the spin mixing interface conductivity concept*, arXiv:1306.5012 (with useful introduction) - H. Chen, Q. Niu, and A. H. MacDonald,
*Anomalous Hall effect arising from noncollinear antiferromagnetism*, arXiv:1309.4041 (proposed to be large in Mn_{3}Ir) - B. M. Norman, C. J. Trowbridge, D. D. Awschalom, and V. Sih,
*Current-Induced Spin Polarization in Anisotropic Spin-Orbit Fields*, Phys. Rev. Lett.**112**, 056601 (2014) (experiments on (Ga,In)As, largest effect not for current in directions with largest spin-orbit coupling) - X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and A. Zunger,
*Hidden spin polarization in inversion-symmetric bulk crystals*, Nature Physics**10**, 387 (2014) (clarify that the presence of spin-orbit effects relies on a noncentrosymmetric point group for the atomic sites, not on a noncentrosymmetric space group so that also group-IV semiconductors show such effects), see also*News and Views*article B. Partoens,*Spin-orbit interactions: Hide and seek*, Nature Physics**10**, 333 (2014) - J. Zelezny, H. Gao, K. Vyborny, J. Zemen, J. Masek, A. Manchon, J.
Wunderlich, J. Sinova, and T. Jungwirth,
*Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets*, Phys. Rev. Lett.**113**, 157201 (2014) (specifically, in-plane currents; proposal) - Z. G. Yu,
*Spin Hall Effect in Disordered Organic Solids*, Phys. Rev. Lett.**115**, 026601 (2015) (due to interference between paths involving canted orbitals, distortions are not considered) - A. Matos-Abiague and J. Fabian,
*Tunneling Anomalous and Spin Hall Effects*, Phys. Rev. Lett.**115**, 056602 (2015) (continuum model) - W. Chen, M. Sigrist, J. Sinova, and D. Manske,
*Minimal Model of Spin-Transfer Torque and Spin Pumping Caused by the Spin Hall Effect*, Phys. Rev. Lett.**115**, 217203 (2015) (envelope-function/Landau-Lifshitz approach) - O. Gomonay, T. Jungwirth, and J. Sinova,
*High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques*, Phys. Rev. Lett.**117**, 017202 (2016)

- J. Maassen, W. Ji, and H. Guo,
*Graphene spintronics: the role of ferromagnetic electrodes*, arXiv:1009.5254 (ab-initio calculation, spin-injection efficiency from Co and Ni into graphene) - N. J. Harmon and M. E. Flatté,
*Distinguishing Spin Relaxation Mechanisms in Organic Semiconductors*, Phys. Rev. Lett.**110**, 176602 (2013) - M. Warner, S. Din, I. S. Tupitsyn,
*et al.*,*Potential for spin-based information processing in a thin-film molecular semiconductor*, Nature (2013), doi:10.1038/nature12597 (slow spin relaxation in thin films of H_{2}Pc with up to 10% CuPc)

- C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen,
Z. Xu, G. Gu, and A. Yazdani,
*Appearance of fluctuating stripes at the onset of the pseudogap in the high-T*, Nature_{c}Superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x}**468**, 677 (2010) - M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L.
Braicovich, H. Berger, J. N. Hancock, D. van der Marel, T. Schmitt, V. N.
Strocov, L. J. P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H.M.
Rønnow, and M. Grioni,
*High-energy magnon dispersion demonstrate extended interactions in undoped cuprates*, arXiv:1004.2441 (RIXS, experiment and theory) - I. Raicevic, D. Popovic, C. Panagopoulos, L. Benfatto, M. B.
Silva Neto, E. S. Choi, and T. Sasagawa,
*Evidence for Quantum Skyrmions in a Doped Antiferromagnet*, arXiv:1006.1891 (Li-doped La_{2}CuO_{4}) - H.-B. Yang, J. D. Ramaeu, Z.-H. Pan, G. D. Gu, P. D. Johnson, R. H.
Claus, D. G. Hinks, and T. E. Kidd,
*On the Reconstructed Fermi Surface in the Underdoped Cuprates*, arXiv:1008.3121 (ARPES: complete hole pockets, but with vanishing weight at the AFM zone boundary) - A. T. Boothroyd, P. Babkevich, D. Prabhakaran, and P. G. Freeman,
*An hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet*, Nature**471**, 341 (2011) (La_{2-x}Sr_{x}CoO_{4}, note News and Views) - M. Le Tacon
*et al.*,*Intense paramagnon excitations in a large family of high-temperature superconductors*, Nature Physics**7**, 725 (2011) (RIXS, high precision, surprisingly universal) - M. K. Chan, M. J. Veit, C. J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, X.
Zhao, N. Barisic, and M. Greven,
*In-Plane Magnetoresistance Obeys Kohler's Rule in the Pseudogap Phase of Cuprate Superconductors*, Phys. Rev. Lett.**113**, 177005 (2014) (Kohler's rule, δρ/ρ_{0}=*F*(*H*/ρ_{0}) independent of temperature, is satisfied, this implies that a Fermi-liquid plus Boltzmann description with essentially constant scattering rate is applicable, contains brief discussion of Kohler's rule)

- Y. H. Szczech, M. A. Tusch, and D. E. Logan,
*Collective excitation spectrum of a disordered Hubbard model*, J. Phys.: Condens. Matter**9**, 9621 (1997) (3D Hubbard model at half filling)**P** - F. Carvalho Dias and I. R. Pimentel,
*Spin correlations and magnetic susceptibilities of lightly doped antiferromagnets*, Phys. Rev. B**71**, 224412 (2005) (slave-fermion/Schwinger-boson method applied to*t*-*J*model) - S. I. Vedeneev and D. K. Maude,
*Vortexlike excitations in a nonsuperconducting single-layer compound Bi*, Phys. Rev. B_{2+x}Sr_{2-x}CuO_{6+delta}single crystal in high magnetic fields**72**, 214514 (2005) - T. Morinari,
*Half-skyrmion picture of single hole doped high-T*, cond-mat/0502437; T. Morinari,_{c}cuprate*Half-skyrmion picture of single hole doped CuO*, cond-mat/0507666;_{2}plane*Mechanism of d*, cond-mat/0509632_{x2-y2}-wave superconductivity based on doped hole induced spin texture in high T_{c}cuprates - C. Bruegger, F. Kaempfer, M. Pepe, and U.-J. Wiese,
*Magnon-mediated Binding between Holes in an Antiferromagnet*, cond-mat/0511367 - G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani,
O. Gunnarsson, S.-K. Mo, J. W. Allen, H.-D. Kim, A. Sekiyama, A. Yamasaki,
S. Suga, and P. Metcalf,
*Static vs. dynamical mean field theory of Mott antiferromagnets*, cond-mat/0511442 (theory and experiment) - A. Luscher, A. Läuchli, W. Zheng, and O. P. Sushkov,
*Single-hole properties of the t-J model on the honeycomb lattice*, cond-mat/0512074 - W.-F. Tsai and S. A. Kivelson,
*Inhomogeneous Hubbard Models: from Weak to Strong Coupling*, cond-mat/0601113 - L. Balents and S. Sachdev,
*Dual vortex theory of doped Mott insulators*, cond-mat/0612220 - M. Greiter and R. Thomale,
*No evidence for spontaneous orbital currents in finite size studies of three-band models for CuO planes*, cond-mat/0701245 (criticize Varma's picture) - T.-P. Choy, R. G. Leigh, and P. Phillips,
*Hidden Charge 2e Boson: Experimental Consequences for Doped Mott Insulators*, arXiv:0712.2841 (discuss how many peculiar features of the normal state of cuprates result naturally from a low-energy charge-2e bosonic field); R. G. Leigh and P. Phillips,*Origin of the Mott Gap*, arXiv:0812.0593 - D. Poilblanc,
*Properties of Holons in the Quantum Dimer Model*, Phys. Rev. Lett.**100**, 157206 (2008) (amoung other results, finds tendency of holons to bind magnetic vortices, whereby they are transmuted to bosons) - C.-W. Liu, S. Liu, Y.-J. Kao, A. L. Chernyshev, and A. W.
Sandvik,
*Impurity-induced frustration in correlated oxides*, arXiv:0812.1023 - K. Bouadim, G. G. Batrouni, and R. T. Scalettar,
*Determinant Quantum Monte Carlo Study of the Orbitally Selective Mott Transition*, arXiv:0903.3390 - T. Morinari,
*Half-Skyrmion theory for high-temperature superconductivity*, arXiv:0908.3385 - S. Chakraborty, S. Hong, and P. Phillips,
*Non-conservation of Fermionic Degrees of Freedom at Low-energy in Doped Mott Insulators*, arXiv:0909.3096 - S. K. Sarker and T. Lovorn,
*A Consistent Theory of Underdoped Cuprates: Evolution of the RVB State From Half Filling*, arXiv:0910.2204 - M. Khodas and A. M. Tsvelik,
*Influence of Thermal Fluctuations of Spin Density Wave Order Parameter on the Quasiparticle Spectral Function*, arXiv:1001.0590 (a spin-fermion model of electrons coupled to SDW order, motivated by underdoped cuprates, but also potentially relevant for pnictides) - F. Hassler, A. Rüegg, M. Sigrist, and G. Blatter,
*Dynamical Unbinding Transition in a Periodically Driven Mott Insulator*, arXiv:1002.3085 (Hubbard model in non-equilibrium) - T. Das, R. S. Markiewicz, and A. Bansil,
*Optical model-solution to the competition between a pseudogap phase and a Mott-gap phase in high-temperature cuprate superconductors*, arXiv:1002.4188 - H. T. Dang, E. Gull, and A. J. Millis,
*Response of a correlated material to a local electric field: how much does a muon perturb a correlated electron material?*, arXiv:1004.5369 - P. Phillips,
*Mottness Collapse and T-linear Resistivity in Cuprate Superconductors*, arXiv:1006.2396 - D. J. Singh and I. I. Mazin,
*Experimental evidence for nematic order of cuprates in relation to lattice structure*, arXiv:1007.0255 (discussion of evidence for nematic order, contains a helpful illustration of what nematic order signifies) - P. Ye, C.-S. Tian, X.-L. Qi, and Z.-Y. Weng,
*Unconventional order parameters in doped Mott insulators*, arXiv:1007.2507 (predict a novel "Bose insulating phase") - B. K. Clark, D. A. Abanin, and S. L. Sondhi,
*Nature of the spin liquid state of the Hubbard model on honeycomb lattice*, arXiv:1010.3011 (effective*J*_{1}-*J*_{2}low-energy model, variational calculation)**P** - J. Lin and A. J. Millis,
*Optical and Hall conductivities of a thermally disordered two-dimensional spin-density wave: two-particle response in the pseudogap regime of electron-doped high-T*, arXiv:1011.3265_{c}superconductors - G. Sordi, K. Haule, and A.-M. S. Tremblay,
*Mott physics and first-order transition between two metals in the normal state phase diagram of the two-dimensional Hubbard model*, arXiv:1102.0463 (cellular DMFT with QMC; phase diagram of doped 2D Hubbard model in*U*, temperature, and chemical potential, find a novel first-order transition between metallic states which ends at a critical line at finite temperature) - Li Liu, H. Yao, E. Berg, and S. A. Kivelson,
*Phases of the infinite U Hubbard model*, arXiv:1103.3315 (DMRG for ladders) - S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev,
*Quantum critical response at the onset of spin density wave order in two-dimensional metals*, arXiv:1106.0001 (very long paper motivated by the cuprates) - T. M. Rice, K.-Y. Yang, and F. C. Zhang,
*A Phenomenological Theory of the Anomalous Pseudogap Phase in Underdoped Cuprates*, arXiv:1109.0632, Rep. Prog. Phys. (long paper on the authors' approach, partially of review character) - S. Hong and P. Phillips,
*Towards the Standard Model of Fermi Arcs from a Wilsonian Reduction of the Hubbard Model*, arXiv:1110.0440 - G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay,
*Pseudogap temperature along the Widom line of a first-order transition in doped Mott insulators*, arXiv:1110.1392 (a Widom first-order phase transition as the main player in the physics of cuprates in the normal state) - I. Bakken Sperstad, E. B. Stiansen, and A. Sudbø,
*Quantum criticality in a dissipative (2+1)-dimensional XY model of circulating currents in high-Tc cuprates*, arXiv:1111.0629 (Monte Carlo) - N. D. Vlasii, C. P. Hofmann, F.-J. Jiang, and U.-J. Wiese,
*Symmetry Analysis of Holes Localized on a Skyrmion in a Doped Antiferromagnet*, arXiv:1205.3677 (long paper, holes coupled to Skyrmions, pre-formed pairs in cuprates) - T. Morinari,
*Topological Spin Texture Created by Zhang-Rice Singlets in Cuprate Superconductors*, arXiv:1207.2245, J. Phys. Soc. Jpn.**81**, 074716 (2012) (single hole relative to half filling generates Zhang-Rice singlet, proposes that the Zhang-Rice singlet dresses with a skyrmion in the antiferromagnetic order) - W. Rowe, J. Knolle, I. Eremin, and P. J. Hirschfeld,
*Spin excitations in layered antiferromagnetic metals and superconductors*, arXiv:1207.3834 (motivated by cuprates but has some implications for pnictides as well, also coexistence of SDW and superconducting order) - H. Ebrahimnejad, G. A. Sawatzky, and M. Berciu,
*The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations*, Nature Phys.**10**, 951 (2014) (three-band [and five-band]*tJ*-type model; variational approach; very interesting paper suggesting that the Zhang-Rice-singlet picture misses essential physics) - Z. Wang, W.-J. Hu, and A. H. Nevidomskyy,
*Spin Ferroquadrupolar Order in the Nematic Phase of FeSe*, Phys. Rev. Lett.**116**, 247203 (2016) (spin-only model, variational mean-field approximation)

For the theory of superconductivity see Microscopic theory of bulk superconductors

- A. Singh and E. Fradkin,
*Localization and correlation effects in itinerant ferromagnets*, Phys. Rev. B**35**, 6894 (1987) (employing 1/*N*expansion) - A. V. Andreev and A. Kamenev,
*Itinerant Ferromagnetism in Disordered Metals: A Mean-Field Theory*, Phys. Rev. Lett.**81**, 3199 (1998) (enhancement of ferromagnetism by potential disorder in two dimensions or less, no fluctuations) - P. Jacquod and A. D. Stone,
*Ground-State Magnetization in Disordered Systems: Exchange vs. Off-Diagonal Interaction Fluctuations*, cond-mat/0003352, phys. stat. sol. (2000) - P. Jacquod and A. D. Stone,
*Ground-state magnetization for interacting fermions in a disordered potential: Kinetic energy, exchange interaction, and off-diagonal fluctuations*, Phys. Rev. B**64**, 214416 (2001) (contains brief review of Stoner theory in disordered metals) - Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer,
*Current-Induced Magnetization Dynamics in Disordered Itinerant Ferromagnets*, cond-mat/0512715 (extended local-density approximation) - S. G. Magalhaes, F. M. Zimmer, P. R. Krebs, and B. Coqblin,
*Spin Glass and ferromagnetism in disordered Cerium compounds*, cond-mat/0606551 (competition between spin glass, ferromagnetism, and Kondo physics for Kondo lattice model with random interactions, functional integral approach) - J. A. Sobota, D. Tanaskovic, and V. Dobrosavljevic,
*RKKY interactions in the regime of strong localization*, cond-mat/0609425 (more general idea exhibited for 1D system; no diffusion) - J. A. Hoyos and T. Vojta,
*Local defect in a magnet with long-range interactions*, cond-mat/0611001 (Ising magnet in paramagnetic phase close to classical or quantum critical point, with long-range stiffness-type [not density-density] interaction and a spherical defect region favoring magnetic order)**P** - L. De Sanctis and F. Guerra,
*Mean field dilute ferromagnet I. High temperature and zero temperature behavior*, arXiv:0801.4940 (Ising model on random network, same coupling on all bonds) - A. Chakraborty and G. Bouzerar,
*Dynamical properties of a three-dimensional diluted Heisenberg model*, Phys. Rev. B**81**, 172406 (2010) (site-diluted nearest-neighbor Heisenberg model, self-consistent local RPA for large supercells)**P** - R. Misra, A. F. Hebard, K. A. Muttalib, and P. Wölfle,
*Asymmetric Metal-Insulator Transition in Disordered Ferromagnetic Films*, Phys. Rev. Lett.**107**, 037201 (2011) (Gd films; experiment and theory) - L. Demko, S. Bordacs, T. Vojta, D. Nozadze, F. Hrahsheh, C. Svoboda,
B. Dora, H. Yamada, M. Kawasaki, Y. Tokura, and I. Kezsmarki,
*Disorder promotes ferromagnetism: Rounding of the quantum phase transition in Sr*, arXiv:1202.3810 (experiments and theory, FM-PM quantum phase transition is destroyed by the compositional disorder, ferromagnetism is extended by the disorder, correlated disorder is more beneficial for ferromagnetism than random disorder)_{1-x}Ca_{x}RuO_{3} - Y. Sang, D. Belitz, and T. R. Kirkpatrick,
*Disorder Dependence of the Ferromagnetic Quantum Phase Transition*, Phys. Rev. Lett.**113**, 207201 (2014) (explain how disorder suppresses the first-order ferromagnetic transition in ferromagnets with reduced Curie temperature and turns it into a second order transition, ending in a QCP; contains nice summary of the clean case)

- Y. Qiu, W. Bao, Q. Huang, J. W. Lynn, T. Yildirim, J. Simmons, Y. C.
Gasparovic, J. Li, M. Green, T. Wu, G. Wu, and X. H. Chen,
*The absence of the spin-density-wave order in the NdFeAs(O,F) high T*, arXiv:0806.2195 (this compound shows a structural transition at about 150K, but no SDW order except at very small temperatures, unlike other compounds of this class - by now superceded, it does show SDW order)_{c}superconductor system - M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales, M. D.
Lumsden, R. Jin, E. A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V.
Varadarajan, J. W. Brill, R. P. Hermann, M. T. Sougrati, F. Grandjean,
and G. J. Long,
*Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra*, arXiv:0806.3878**P** - D. Hsieh, Y. Xia, L. Wray, D. Qian, K. Gomes, A. Yazdani, G. F. Chen,
J. L. Luo, N.L. Wang, and M. Z. Hasan,
*Experimental determination of the microscopic origin of magnetism in parent iron pnictides*, arXiv:0812.2289 (ARPES and STM, favoring a SDW state)**P** - Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and
M. Z. Hasan,
*Fermi Surface Topology and Low-Lying Quasiparticle Dynamics of Parent Fe*, Phys. Rev. Lett._{1+x}Te/Se Superconductor**103**, 037002 (2009); see also Viewpoint: A. V. Balatsky and D. Parker,*Not all iron superconductors are the same*, Physics**2**, 59 (2009) - M. Matusiak, T. Plackowski, Z. Bukowski, N. D. Zhigadlo, and J.
Karpinski,
*The thermoelectric power as an evidence of Spin Density Wave order in the SmFeAsO and NdFeAsO*, arXiv:0901.2472**P** - N. J. Curro, A. P. Dioguardi, N. Roberts-Warren, A. C. Shockley, and
P. Klavin,
*Low energy spin dynamics in the antiferromagnetic phase of CaFe*, arXiv:0902.4492 (NMR, consistent with metallic ordered state)_{2}As_{2} - S. E. Hahn, Y. Lee, N. Ni, A. Alatas, B. M. Leu, D. Y. Chung, I. S.
Todorov, E. E. Alp, M. G. Kanatzidis, P.C. Canfield, A. I. Goldman, R. J.
McQueeney, and B. N. Harmon,
*Influence of Magnetism on Phonons in CaFe*, arXiv:0903.0017 (strong effect of magnetic correlations on phonons even in the disordered phase)_{2}As_{2} - G. Liu, H. Liu, L. Zhao, W. Zhang, X. Jia, J. Meng, X. Dong, G. F.
Chen, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J.
Zhou,
*Electronic Evidence of Unusual Magnetic Ordering in a Parent Compound of FeAs-Based Superconductors*, arXiv:0904.0677 - Y. Luo, Y. Li, S. Jiang, J. Dai, G. Cao, and Z. Xu,
*Phase diagram of CeFeAs*, arXiv:0907.2961_{1-x}P_{x}O: Two magnetic quantum critical points driven by chemical doping - D. S. Inosov, J. T. Park, P. Bourges, D. L. Sun, Y. Sidis, A.
Schneidewind, K. Hradil, D. Haug, C. T. Lin, B. Keimer, and V. Hinkov,
*Normal-State Spin Dynamics and Temperature-Dependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor*, arXiv:0907.3632 (inelastic neutron scattering, exhibiting a nearly antiferromagnetic metal without pseudogap) - J. J. Ying, T. Wu, Q. J. Zheng, Y. He, G. Wu, Q. J. Li, Y. J. Yan, Y.
L. Xie, R. H. Liu, X. F. Wang, and X. H. Chen,
*Study of Electron Spin Resonance on single crystals EuFe*, arXiv:0908.0037_{2-x}Co_{x}As_{2} - R. Khasanov, M. Bendele, A. Amato, K. Conder, M. Elender, H. Keller,
H.-H. Klauss, H. Luetkens, E. Pomjakushina, and A. Raselli,
*Pressure Induced Static Magnetic Order in Superconducting FeSe*, arXiv:0908.2734 (under pressure, antiferromagnetic long-range order appears above the superconducting transition and might coexist at low temperatures)_{1-x} - H. Li, W. Tian, J. L. Zarestky, A. Kreyssig, N. Ni, S. L. Bud'ko, P. C.
Canfield, A. I. Goldman, R. J. McQueeney, and D. Vaknin,
*Magnetic and lattice coupling in single-crystal SrFe*, arXiv:0908.4253 (coinciding structural and magnetic first-order transitions)_{2}As_{2}: A neutron scattering study - D. Reznik, K. Lokshin, D. C. Mitchell, D. Parshall, W. Dmowski, D.
Lamago, R. Heid, K.-P. Bohnen, A.S. Sefat, M. A. McGuire, B. C. Sales, D. G.
Mandrus, A. Asubedi, D. J. Singh, A. Alatas, M. H. Upton, A. H. Said, A.
Cunsolo, Yu. Shvydko, and T. Egami,
*Phonons as a probe of the magnetic state in doped and undoped BaFe*, arXiv:0908.4359 (inelastic x-ray scattering compared to DFT, suggesting strong coupling between phonons and high-frequency magnetic fluctuations)_{2}As_{2} - T. Egami, B. V. Fine, D. J. Singh, D. Parshall, C. de la Cruz, and P. Dai,
*Spin-Phonon Coupling in Iron Pnictide Superconductors*, arXiv:0908.4361 (short paper, Landau theory for the magnetic order controlled by As-Fe separation) - M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J.
Singh, M. B. Maple, and D. N. Basov,
*Electronic correlations in the iron pnictides*, arXiv:0909.0312 (infrared and optical spectroscopy) - M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, M.
Hashimoto, R. G. Moore, I. I. Mazin, D. J. Singh, Z. Hussain, I. R. Fisher,
and Z.-X. Shen,
*Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across the spin density wave transition*, arXiv:0909.0831 (ARPES, compared to DFT) - A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel,
*Rare earth magnetism in CeFeAsO: A single crystal study*, arXiv:0909.0903 (single crystals, Ce moments do not feel SDW ordering?) - E. Dengler, J. Deisenhofer, H.-A. Krug von Nidda, S. Khim, J.
S. Kim, K. H. Kim, F. Casper, C. Felser, and A. Loidl,
*Coupling of localized moments and itinerant electrons in EuFe2As2 single crystals studied by Electron Spin Resonance*, arXiv:0909.2054 - S. J. Moon, J. H. Shin, D. Parker, W. S. Choi, I. I. Mazin, Y. S. Lee,
J. Y. Kim, N. H. Sung, B. K. Cho, S. H. Khim, J. S. Kim, K. H. Kim, and T. W.
Noh,
*Dual Character of Magnetism in Ferropnictides: Insights from Optical Measurements*, arXiv:0909.3352 (optical spectroscopy accompanied by DFT: intermediate, not fully local or itinerant antiferromagnetism) - H. Sugawara, K. Ishida, Y. Nakai, H. Yanagi, T. Kamiya, Y. Kamihara,
M. Hirano, and H. Hosono,
*Two-Dimensional Spin Dynamics in the Itinerant Ferromagnet LaCoPO Revealed by Magnetization and*, arXiv:0909.5641 (isostructural with 1111 pnictides showing SDW order and superconductivity; LaCoPO is a weak ferromagnetic metal with small ordered moments but large paramagnetic moments above^{31}P-NMR Measurements*T*)_{C} - R. Mittal, R. Heid, A. Bosak, T. R. Forrest, S. L. Chaplot, D. Lamago,
D. Reznik, K. P. Bohnen, Y. Su, N. Kumar, S. K. Dhar, A. Thamizhavel, Ch.
Rüegg, M. Krisch, D. F. McMorrow, Th. Brueckel, and L. Pintschovius,
*Pressure dependence of phonon modes across the tetragonal to collapsed tetragonal phase transition in CaFe2As2*, arXiv:0911.1665 - Y. Luo, Q. Tao, Y. Li, X. Lin, L. Li, G. Cao, Z. Xu, H. Kaneko,
A. V. Savinkov, Y. Xue, H. Suzuki, C. Fang, and J. Hu,
*Evidence of Magnetically Driven Structural Phase Transition in Parent Compounds RFeAsO (R = La, Sm, Gd, Tb): study of low-temperature X-ray diffraction*, arXiv:0911.2779 (in 1111-compounds the structural and Neel transition temperatures as well as their difference decrease with decreasing c-axis lattice constant with rare-earth substitution)**P** - R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P. Chandra, V.
Keppens, D. Mandrus, M. A. McGuire, B. C. Sales, A. S. Sefat, and J.
Schmalian,
*Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors*, arXiv:0911.3084; Phys. Rev. Lett. (ultrasound spectroscopy, supports the notion that the structural transition is strongly coupled to magnetic fluctuations; note changed title in new version, original title "*Fluctuations-induced softening of the elastic properties of Fe-As based pnictide superconductors*") - K. Matan, S. Ibuka, R. Morinaga, S. Chi, J. W. Lynn,
A. D. Christianson, M. D. Lumsden, and T. J. Sato,
*Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2*, arXiv:0912.4945 (inelastic neutron scattering, also propose a change in the Fermi-surface topology) - Q. Si,
*Iron pnictide superconductors: Electrons on the verge*, arXiv:0912.4989 (optical spectroscopy suggesting rather strong electronic correlations) - G. Lang, H.-J. Grafe, D. Paar, F. Hammerath, K. Manthey, G. Behr, J.
Werner, and B. Büchner,
*Nanoscale electronic order in iron pnictides*, arXiv:0912.5495 (... in underdoped 1111 samples but not in undoped or optimally doped samples) - V. P. S. Awana, I. Nowik, A. Pal, K. Yamaura, E. Takayama-Muromachi,
and I. Felner,
*Magnetic phase transitions in SmCoAsO*, Phys. Rev. B**81**, 212501 (2010) (upon lowering the temperature, the material becomes a ferromagnetic metal, then a SDW metal, and at a low temperature, the Sm moments also order antiferromagnetically); A. Pal, H. Kishan, and V. P. S. Awana,*Possible kinetic arrest of the ferromagnetic to anti-ferromagnetic transition in SmCoAsO: The interplay of Sm4f and Co3d spins*, arXiv:1008.2593 - P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.-M. Xu, J. H. Bowen,
G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi,
*Observation of Dirac Cone Electronic Dispersion in BaFe*, Phys. Rev. Lett._{2}As_{2}**104**, 137001 (2010) (ARPES, Dirac cone due to spin-density-wave formation); see also Viewpoint: M. Z. Hasan and B. A. Bernevig,*Dirac cone in iron-based superconductors*, Physics**3**, 27 (2010) - J. G. Storey, J. W. Loram, J. R. Cooper, Z. Bukowski, and J. Karpinski,
*The electronic specific heat of Ba1-xKxFe2As2 from 2K to 380K*, arXiv:1001.0474 - A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel,
*Structural and magnetic transition in CeFeAsO: separated or connected?*, arXiv:1001.4349 (difference between strutural and magnetic transition temperatures decreases with increasing sample quality, is concluded to be extrinsic) - B. Zhou, Y. Zhang, L.-X. Yang, M. Xu, C. He, F. Chen, J.-F. Zhao,
H.-W. Ou, J. Wei, B.-P. Xie, T. Wu, G. Wu, M. Arita, K. Shimada, H. Namatame,
M. Taniguchi, X. H. Chen, and D. L. Feng,
*Electronic structure of EuFe2As2*, arXiv:1001.4537 (ARPES) - Q. Tao, Z. Zhu, X. Lin, G. Cao, Z. Xu, G. Chen, J. Luo, and N. Wang,
*Comparative study on the thermoelectric effect of parent oxypnictides LaTAsO (T = Fe, Ni)*, arXiv:1002.0417 - T. Dong, Z. G. Chen, R. H. Yuan, B. F. Hu, B. Cheng, and N. L. Wang,
*Formation of partial energy gap below the structural phase transition and strong electron-phonon coupling effect in ReFeAsO (Re=La, Nd, and Sm)*, arXiv:1005.0780 - L. X. Yang, B. P. Xie, Y. Zhang, C. He, Q. Q. Ge, X. F. Wang, X. H.
Chen, M. Arita, J. Jiang, K. Shimada, M. Taniguchi, I. Vobornik, G. Rossi, J.
P. Hu, D. H. Lu, Z. X. Shen, Z. Y. Lu, and D. L. Feng,
*Surface and bulk electronic structures of LaOFeAs studied by angle resolved photoemission spectroscopy*, arXiv:1006.1107 (suggest significant reconstruction of the bands at the SDW transition and that the structural transition is due to short-range magnetic order) - W. Tian, W. Ratcliff II., M. G. Kim, J.-Q. Yan, P. A. Kienzle, Q. Huang,
B. Jensen, K. W. Dennis, R. W. McCallum, T. A. Lograsso, R. J. McQueeney, A.
I. Goldman, J. W. Lynn, and A. Kreyssig,
*Interplay between Fe and Nd magnetism in NdFeAsO single crystals*, arXiv:1006.1135 (neutron and x-ray defraction etc., find an additional fourth transition where the interplanar order of Fe moments changes, above the Nd-ordering transition) - E. Arushanov, C. Hess, G. Behr, S. Levcenko, A. Kondrat, J. Werner,
G. Fuchs, S.-L. Drechsler, and B. Büchner,
*Scaling of normal-state transport properties of 1111 iron-pnictide superconductors*, arXiv:1006.2350 - M. Zbiri, R. Mittal, S. Rols, Y. Su, Y. Xiao, H. Schober, S. L.
Chaplot, M. R. Johnson, T. Chatterji, Y. Inoue, S. Matsuishi, H. Hosono, and
T. Brueckel,
*Magnetic Lattice Dynamics of the Oxygen-Free FeAs Pnictides: How Sensitive are Phonons to Magnetic Ordering?*, arXiv:1007.1711 - T. Yoshida, I. Nishi, A. Fujimori, M. Yi, R. G. Moore, D.-H. Lu, Z.-X.
Shen, K. Kihou, P. M. Shirage, H. Kito, C. H. Lee, A. Iyo, H. Eisaki, and H.
Harima,
*Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy*, arXiv:1007.2698 - T. Terashima, N. Kurita, A. Kikkawa, H. S. Suzuki, T. Matsumoto, K.
Murata, and S. Uji,
*Magnetotransport studies of EuFe*, arXiv:1008.2029 (scattering off Eu moments found to have little effect on transport)_{2}As_{2}: the influence of the Eu^{2+}magnetic moments - L. Ma, J. Zhang, G. F. Chen, and W. Yu,
*NMR evidence of strong-correlated superconductivity in LiFeAs: tuning toward an SDW ordering*, arXiv:1008.5199 - M. Yi, D. H. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F.
Kemper, S.-K. Mo, R. G. Moore, M. Hashimoto, W. S. Lee, Z. Hussain, T. P.
Devereaux, I. R. Fisher, and Z.-X. Shen,
*Symmetry breaking orbital anisotropy on detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition*, arXiv:1011.0050 (related to nematicity) - L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez,
A. U. B Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B.
Büchner,
*Phase diagram of iron-arsenide superconductors Ca(Fe*, arXiv:1011.2085 (antiferromagnetic and superconducting phases)_{1-x}Co_{x})_{2}As_{2}(0 ≤ x ≤ 0.2) - M. G. Kim, A. Kreyssig, A. Thaler, D. K. Pratt, W. Tian, J. L.
Zarestky, M. A. Green, S. L. Bud'ko, P. C. Canfield, R. J. McQueeney, and A.
I. Goldman,
*Antiferromagnetic ordering in the absence of a structural distortion in Ba(Fe*, arXiv:1011.2816 (do not observe a structural distortion in this material although there is stripe-like antiferromagnetic order)_{1-x}Mn_{x})_{2}As_{2} - L. W. Harriger, H. Luo, M. Liu, T. G. Perring, C. Frost, J. Hu, M. R.
Norman, and P. Dai,
*Nematic spin fluid in the tetragonal phase of BaFe*, arXiv:1011.3771 (observe a strong anisotropy of the [damped] spin-wave dispersion around the ordering vectors even above the Neél and structural transition temperature, but not relative to the Gamma point, attribute the results to nematicity)_{2}As_{2} - R. A. Ewings, T. G. Perring, J. Gillett, S. D. Das, S. E. Sebastian,
A. E. Taylor, T. Guidi, and A. T. Boothroyd,
*Itinerant Spin Excitations in SrFe*, arXiv:1011.3831 (also comparison to theory: an itinerant multi-band model [Knolle_{2}As_{2}Measured by Inelastic Neutron Scattering*et al.*] works better than a local-moment model) - J. J. Ying, X. F. Wang, T. Wu, Z. J. Xiang, R. H. Liu, Y. J. Yan, A.
F. Wang, M. Zhang, G. J. Ye, P. Cheng, J. P. Hu and X. H. Chen,
*Distinct electronic nematicities between electron and hole underdoped iron pnictides*, arXiv:1012.2731 (in-plan anisotropy of resistivity is very different) - I. Nowik, I. Felner, Z. Ren, G. H. Cao, and Z. A. Xu,
*Coexistence of ferromagnetism and superconductivity: magnetization and Mossbauer studies of EuFe*, J. Phys.: Condens. Matter_{2}(As_{1-x}P_{x})_{2}**23**, 065701 (2011) (isovalent substitution of As by P leads to ferromagnetism coexisting with superconductivity) - M. G. Kim, R. M. Fernandes, A. Kreyssig, J. W. Kim, A. Thaler, S. L.
Bud'ko, P. C. Canfield, R. J. McQueeney, J. Schmalian, and A. I. Goldman,
*Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe*, Phys. Rev. B_{2}As_{2}compounds**83**, 134522 (2011) (structural and antiferromagnetic transitions are found to happen at slightly different temperatures, experiments and theoretical analysis based on Ginzburg-Landau mean-field approach)**P** - B. J. Arnold, S. Kasahara, A. I. Coldea, T. Terashima, Y. Matsuda, T.
Shibauchi, and A. Carrington,
*Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe*, Phys. Rev. B_{2}P_{2}**83**, 220504(R) (2011) (de Haas-van Alphen) - M. Matusiak, Z. Bukowski, and J. Karpinski,
*Doping dependence of the Nernst effect in Eu(Fe1-xCox)2As2 - departure from Dirac fermions physics*, arXiv:1102.3198 (the parent compound behaves as expected, though) - T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.-H. Lee, Y. Tomioka,
T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima, S. Ishida, S. Uchida,
H. Harima, and S. Uji,
*Complete Fermi surface in BaFe*, arXiv:1103.3329 (find highly three-dimensional Fermi pockets)_{2}As_{2}observed via quantum oscillation measurements on detwinned single crystals - S. Arsenijeviíc, R. Gaál, A. S. Sefat, M. A. McGuire, B. C.
Sales, D. Mandrus, and L. Forró,
*Pressure effects on the transport coefficients of Ba(Fe1-xCox)2As2*, arXiv:1103.4501 - D. K. Pratt, M. G. Kim, A. Kreyssig, Y. B. Lee, G. S. Tucker, A.
Thaler, W. Tian, J. L. Zarestky, S. L. Bud'ko, P. C. Canfield, B. N. Harmon,
A. I. Goldman, and R. J. McQueeney,
*Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors*, arXiv:1104.0717 (supports the scenario of a nesting-induced SDW) - M. Wang, X. C. Wang, D. L. Abernathy, L. W. Harriger, H. Q. Luo,
Y. Zhao, J. W. Lynn, Q. Q. Liu, C. Q. Jin, C. Fang, J. Hu, and P. Dai,
*Antiferromagnetic spin excitations in single crystals of nonsuperconducting Li1-xFeAs*, arXiv:1104.3653 (neutron scattering: magnetic excitations are predominantly antiferromagnetic and the maximum moves in k-space as a function of energy) - V. P. S. Awana, A. Pal, B. Gahtori, and H. Kishan,
*Interplay of Sm4f and Co3d spins in SmCoAsO*, arXiv:1105.3546 - V. Grinenko, K. Kikoin, S.-L. Drechsler, G. Fuchs, K. Nenkov, S. Wurmehl,
F. Hammerath, G. Lang, H.-J. Grafe, B. Holzapfel, J. van den Brink, B.
Büchner, and L. Schultz,
*As-vacancies, local moments, and Pauli limiting in LaO_0.9F_0.1FeAs_(1-delta) superconductors*, arXiv:1105.3602 - N. L. Wang, W. Z. Hu, Z. G. Chen, R. H. Yuan, G. Li, G. F. Chen, and T.
Xiang,
*High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy*, arXiv:1105.3939 - V. Brouet, M. Fuglsang Jensen, A. Nicolaou, A. Taleb-Ibrahimi, P. Le
Fevre, F. Bertran, A. Forget, and D. Colson,
*Orbitally resolved lifetimes in Ba(Fe0.92Co0.08)2As2 measured by ARPES*, arXiv:1105.5604; M. Fuglsang Jensen, V. Brouet, E. Papalazarou, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, A. Forget, and D. Colson,*Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2*, arXiv:1105.5605 - I. R. Fisher, L. Degiorgi, and Z. X. Shen,
*In-plane electronic anisotropy of underdoped "122" Fe-arsenide superconductors revealed by measurements of detwinned single crystals*, arXiv:1106.1675 - M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C. H. Lee, A.
Iyo, H. Eisaki, T. Kakeshita, T. Ito, and S. Uchida,
*Unprecedented anisotropic metallic state in BaFe2As2 revealed by optical spectroscopy*, arXiv:1106.4967 - S. Nandi, Y. Su, Y. Xiao, S. Price, X. F. Wang, X. H. Chen, J.
Herrero-Martín, C. Mazzoli, H. C. Walker, L. Paolasini, S. Francoual,
D. K. Shukla, J. Strempfer, T. Chatterji, C. M. N. Kumar, R. Mittal, H. M.
Rønnow, C. Rüegg, D. F. McMorrow, and Th. Brückel,
*Strong coupling of Sm and Fe magnetism in SmFeAsO as revealed by magnetic x-ray scattering*, arXiv:1107.1778 - H. Gretarsson, A. Lupascu, Jungho Kim, D. Casa, T. Gog, W. Wu, S. R.
Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N.-L. Wang, S.
Khim, K. H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J.-H. Chu, I. R.
Fisher, and Y.-J. Kim,
*Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy*, arXiv:1107.2211 (find local iron moments on the order of 1 Bohr magneton in various pnictides but larger moments in chalcogenides) - S.-H. Baek, H.-J. Grafe, F. Hammerath, M. Fuchs, C. Rudisch, L. Harnagea,
S. Aswartham, S. Wurmehl, J. van den Brink, and B. Büchner,
*75As NMR-NQR study in superconducting LiFeAs*, arXiv:1108.2592 ("the" p-wave paper) - I. A. Zaliznyak, Z. J. Xu, J. S. Wen, J. M. Tranquada, G. D. Gu, V.
Solovyov, V. N. Glazkov, A. I. Zheludev, V. O. Garlea, and M. B. Stone,
*Continuous magnetic and structural phase transitions in Fe1+yTe*, arXiv:1108.5968 (neutron scattering, magnetic susceptibility, and specific heat; three transitions upon lowering the temperature: structural distortion, incommensurate AFM, lock-in of incommensurate AFM ordering vector) - A. Pandey, R. S. Dhaka, J. Lamsal, Y. Lee, V. K. Anand, A.
Kreyssig, T. W. Heitmann, R. J. McQueeney, A. I. Goldman, B. N. Harmon, A.
Kaminski, and D. C. Johnston,
*Ba{1-x}KxMn2As2: An Antiferromagnetic Local-Moment Metal*, arXiv:1110.5546 (said to be intermediate between iron pnictides and cuprates) - E. C. Blomberg, A. Kreyssig, M. A. Tanatar, R. Fernandes, M. G. Kim,
A. Thaler, J. Schmalian, S. L. Bud'ko, P. C. Canfield, A. I. Goldman, and R.
Prozorov,
*Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2*, arXiv:1111.0997 (experiments, also Landau theory) - C. Dhital, Z. Yamani, Wei Tian, J. Zeretsky, A. S. Sefat, Z. Wang, R. J.
Birgeneau, and S. D. Wilson,
*Effect of Uniaxial Strain on the Structural and Magnetic Phase Transitions in BaFe2As2*, Phys. Rev. Lett.**108**, 087001 (2012) (neutron scattering; uniaxial pressure leads to detwinning and strong upward shift of structural and magnetic transition temperatures) - S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A. Stange,
A. Carr, M. M. Murnane, H. C. Kapteyn, L. Kipp, M. Bauer, and K. Rossnagel,
*Time-domain classification of charge-density-wave insulators*, Nature Commun.**3**, 1069 (2012) (time- and angle-resolved photemission can elucidate the interaction responsible for insulating behavior) - H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. D. Das, S. E.
Sebastian, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. Gu, A. Thaler, S. Ran,
S. L. Bud'ko, P. C. Canfield, D. Y. Chung, M. G. Kanatzidis, and L. H. Greene,
*Detection of Orbital Fluctuations Above the Structural Transition Temperature in the Iron-Pnictides and Chalcogenides*, arXiv:1201.2479 (point contacts and also junctions with insulating barriers, interpretation in terms of orbital fluctuations relies on theoretical work arXiv:1110.5917) - J. J. Ying, J. C. Liang, X. G. Luo, X. F. Wang, Y. J. Yan, M. Zhang,
A. F. Wang, Z. J. Xiang, G. J. Ye, P. Cheng, and X. H. Chen,
*Transport and magnetic properties of La-doped CaFe*, arXiv:1202.3589_{2}As_{2} - P. Vilmercati, A. Fedorov, F. Bondino, F. Offi, G. Panaccione, P.
Lacovig, L. Simonelli, M. A. McGuire, A. S. M. Sefat, D. Mandrus, B. C.
Sales, T. Egami, W. Ku, and N. Mannella,
*Itinerant electrons, local moments, and magnetic correlations in pnictides high temperature*, arXiv:1203.1950 (Fe 3s core-level photoemission: relatively large, slowly fluctuating local moments, decreasing with doping) - A. Martinelli, A. Palenzona, M. Putti, and C. Ferdeghini,
*Microstructural evolution throughout the structural transition in 1111 oxy-pnictides*, arXiv:1204.1167 - S. C. Speller, T. B. Britton, G. M. Hughes, A. Krzton-Maziopa, E.
Pomjakushina, K. Conder, A. T. Boothroyd, and C. R. M. Grovenor,
*Microstructural analysis of phase separation in iron chalcogenide superconductors*, arXiv:1204.5472 - V. Brouet, M. Fuglsang Jensen, P.-H. Lin, A. Taleb-Ibrahimi, P. Le
Fèvre, F. Bertran, C.-H. Lin, W. Ku, D. Colson, and A. Forget,
*Impact of the 2 Fe unit cell on the electronic structure measured by ARPES in iron pnictides*, arXiv:1205.4513 - S. E. Hahn, G. S. Tucker, J.-Q. Yan, A. H. Said, B. M. Leu, R. W.
McCallum, E. E. Alp, T. A. Lograsso, R. J. McQueeney, and B. N. Harmon,
*Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering*, arXiv:1206.1096 - F. Rullier-Albenque, D. Colson, A. Forget, and H. Alloul,
*Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs*, arXiv:1206.2278 (longitudinal and Hall resistivity, magnetoresistance, Fermi-liquid behavior, extract contribution of superconducting fluctuations) - A. Jesche, T. Förster, J. Spehling, M. Nicklas, M. de Souza, R.
Gumeniuk, H. Luetkens, T. Goltz, C. Krellner, M. Lang, J. Sichelschmidt,
H.-H. Klauss, and C. Geibel,
*Ferromagnetism and superconductivity in P-doped CeFeAsO*, arXiv:1206.7088 (superconductivity setting in at same temperature as Ce ferromagnetism, within Fe-antiferromagnetic phase) - K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C.
Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer,
*Ultrafast transient generation of spin-densitywave order in the normal state of BaFe2As2 driven by coherent lattice vibrations*, arXiv:1207.3987, Nature Mat.**11**, 497 (2012) - S. Kumar, L. Harnagea, S. Wurmehl, B. Büchner, and A. K. Sood,
*Gap-dependent quasiparticle dynamics and coherent acoustic phonons in parent iron pnictide CaFe2As2 across the spin density wave phase transition*, arXiv:1208.3742 - M. Fu, D. A. Torchetti, T. Imai, F. L. Ning, J.-Q. Yan, and A. S. Sefat,
*NMR Search for the Spin Nematic State in LaFeAsO Single Crystal*, arXiv:1208.5652 - V. Grinenko, S.-L. Drechsler, M. Abdel-Hafiez, S. Aswartham, A. U. B.
Wolter, S. Wurmehl, C. Hess, K. Nenkov, G. Fuchs, D. Efremov, B.
Holzapfel, J. van den Brink, and B. Büchner,
*Disordered magnetism in superconducting KFe2As2 single crystals*, arXiv:1210.4590 (magnetization and specific-heat, also theory; cluster spin glass and Griffiths phases, above superconducting*T*)_{c} - Y. K. Kim
*et al.*,*Existence of Orbital Order and its Fluctuation in Superconducting Ba(Fe1-xCox)2As2 Single Crystals Revealed by X-ray Absorption Spectroscopy*, Phys. Rev. Lett.**111**, 217001 (2013) (different occupation of*d*and_{yz}*d*orbitals, signal is larger than expected from an in some sense purely structural anisotropy)_{zx} - P.-H. Lin, Y. Texier, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran,
E. Giannini, M. Grioni, and V. Brouet,
*Nature of the Bad Metallic Behavior of Fe1.06Te Inferred from Its Evolution in the Magnetic State*, Phys. Rev. Lett.**111**, 217002 (2013) (ARPES, also DFT calculations, paramagnet is bad metal with large pseudgap due to spin fluctuations, antiferromagnet is good metal with spins frozen, nesting plays no role) - J. H. Soh, G. S. Tucker, D. K. Pratt, D. L. Abernathy, M. B. Stone, S.
Ran, S. L. Bud'ko, P. C. Canfield, A. Kreyssig, R. J. McQueeney, and A. I.
Goldman,
*Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds*, Phys. Rev. Lett.**111**, 227002 (2013) (there is no sign of spin fluctuations in this nonsuperconducting compound) - F. Rullier-Albenque, D. Colson, and A. Forget,
*Longitudinal magnetoresistance in Co-doped BaFe2As2 and LiFeAs single crystals: Interplay between spin fluctuations and charge transport in iron-pnictides*, arXiv:1303.1677 - E. C. Blomberg, M. A. Tanatar, R. M. Fernandes, I. I. Mazin, B. Shen,
H.-H. Wen, M. D. Johannes, J. Schmalian, and R. Prozorov,
*Sign-reversal of the in-plane resistivity anisotropy in iron pnictides*, arXiv:1304.3490 - A. Srivastava, A. Pal, S. Singh, C. Shekhar, H. K. Singh, V. P. S. Awana,
and O. N. Srivastava,
*Magnetotransport and thermal properties characterization of 55 K superconductor SmFeAsO0.85F0.15*, arXiv:1307.1259 - J. Maletz, V. B. Zabolotnyy, D. V. Evtushinsky, S. Thirupathaiah, A.
U. B. Wolter, L. Harnagea, A. N. Yaresko, A. N. Vasiliev, D. A. Chareev, E.
D. L. Rienks, B. Büchner, and S. V. Borisenko,
*Unusual band renormalization in the simplest iron based superconductor*, arXiv:1307.1280 - I. Pallecchi, F. Bernardini, F. Caglieris, A. Palenzona, S. Massidda, and
M. Putti,
*Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides*, arXiv:1307.6352 (transport experiments and DFT calculations showing presence of Dirac cones in the SDW states but not in the nonmagnetic state, see p. 2) - C. A. McElroy, J. J. Hamlin, B. D. White, M. A. McGuire, B. C. Sales,
and M. B. Maple,
*Magneto-Transport Properties of Single Crystalline LaFeAsO*, arXiv:1308.1885 (partially semiconductor-like, carriers are suggested to freeze out at low temperatures, explaining increase of resistivity and decrease of Hall coefficient) - J. G. Analytis, H.-H. Kuo, R. D. McDonald, M. Wartenbe, P. M. C. Rourke,
N. E. Hussey, and I. R. Fisher,
*Transport near a quantum critical point in BaFe2(As1-xPx)2*, Nature Physics (2014), doi:10.1038/nphys2869 (superconductivity suppressed by magnetic field) - E. P. Rosenthal, E. F. Andrade, C. J. Arguello, R. M. Fernandes, L. Y.
Xing, X. C. Wang, C. Q. Jin, A. J. Millis, and A. N. Pasupathy,
*Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs*, Nature Phys. doi:10.1038/nphys2870 (2014) (STS for NaFeAs and also LiFeAs, where no sign of nematicity is seen) - M. Hiraishi
*et al.*,*Bipartite magnetic parent phases in the iron oxypnictide superconductor*, Nature Phys. doi:10.1038/nphys2906 (2014) (LaFeAsO_{1-x}H_{x}, detect another antiferromagnetic "parent" compount aroung x = 0.5, which could explain two-dome superconducting phase diagram) - K. Gofryk, B. Saparov, T. Durakiewicz, A. Chikina, S. Danzenbächer,
D. V. Vyalikh, M. J. Graf, and A. S. Sefat,
*Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2*, Phys. Rev. Lett.**112**, 186401 (2014) (transport measurements) - C. Zhang, L. W. Harriger, Z. Yin, W. Lv, M. Wang, G. Tan, Y. Song, D. L.
Abernathy, W. Tian, T. Egami, K. Haule, G. Kotliar, and P. Dai,
*Effect of Pnictogen Height on Spin Waves in Iron Pnictides*, Phys. Rev. Lett.**112**, 217202 (2014) (inelastic neutron scattering) - H.-H. Kuo and I. R. Fisher,
*Effect of Disorder on the Resistivity Anisotropy Near the Electronic Nematic Phase Transition in Pure and Electron-Doped BaFe2As2*, Phys. Rev. Lett.**112**, 227001 (2014) (resistive anisotropy found to be essentially independent of disorder, suggested to be due to anisotropy of the electronic structure) - S. Avci
*et al.*,*Magnetically driven suppression of nematic order in an iron-based superconductor*, Nature Commun.**5**, 3845/4845 (2014) (neutron-scattering experiments and theory, Ba_{1-x}Na_{x}Fe_{2}As_{2}, find fourfold symmetric magnetic phase, also in coexistence with superconductivity, close to destruction of magnetic order by doping; title changed compared to preprint) - S.-H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and
B. Büchner,
*Orbital-driven nematicity in â??FeSe*, Nature Mater. doi:10.1038/nmat4138 (2014) (NMR and theory, argue that their results show that nematic order in FeSe is driven by orbital degrees of freedom) - K. Nakayama, Y. Miyata, G. N. Phan, T. Sato, Y. Tanabe, T. Urata, K.
Tanigaki, and T. Takahashi,
*Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor*, Phys. Rev. Lett.**113**, 237001 (2014) (ARPES) - D. D. Khalyavin, S. W. Lovesey, P. Manuel, F. Krüger, S. Rosenkranz,
J. M. Allred, O. Chmaissem, and R. Osborn,
*Symmetry of reentrant tetragonal phase in Ba1-xNaxFe2As2: Magnetic versus orbital ordering mechanism*, Phys. Rev. B**90**, 174511 (2014) (neutron scattering and theory: detailed symmetry analysis and simulation of resonant x-ray scattering)**P** - D. A. Moseley, K. A. Yates, N. Peng, D. Mandrus, A. S. Sefat, W. R.
Branford, and L. F. Cohen,
*Magnetotransport of proton-irradiated BaFe2As2 and BaFe1.985Co0.015As2 single crystals*, Phys. Rev. B**91**, 054512 (2015) (irradiation is shown to only increase the concentration of scatterers, find linear magnetoresistance but not in agreement with present theory, intriguing) - J. Okamoto, C. J. Arguello, E. P. Rosenthal, A. N. Pasupathy, and A. J.
Millis,
*Experimental Evidence for a Bragg Glass Density Wave Phase in a Transition-Metal Dichalcogenide*, Phys. Rev. Lett.**114**, 026802 (2015) (NbSe_{2}, strong pinning of CDW, nevertheless glassy behavior, includes theoretical discussion) - A. E. Böhmer, T. Arai, F. Hardy, T. Hattori, T. Iye, T. Wolf, H. v.
Löhneysen, K. Ishida, and C. Meingast,
*Origin of the Tetragonal-to-Orthorhombic Phase Transition in FeSe: A Combined Thermodynamic and NMR Study of Nematicity*, Phys. Rev. Lett.**114**, 027001 (2015) (no spin fluctuations seen above the structural transition, indicating that the origin of nematicity is not magnetic fluctuations) - C. J. Arguello, E. P. Rosenthal, E. F. Andrade, W. Jin, P. C. Yeh, N.
Zaki, S. Jia, R. J. Cava, R. M. Fernandes, A. J. Millis, T. Valla, R. M.
Osgood, Jr., and A. N. Pasupathy,
*Quasiparticle Interference, Quasiparticle Interactions, and the Origin of the Charge Density Wave in 2H-NbSe*, Phys. Rev. Lett._{2}**114**, 037001 (2015) (experiment and theory) - Y.-T. Cui
*et al.*,*Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO*, Phys. Rev. Lett._{3}Substrate**114**, 037002 (2015) - M. P. Allan
*et al.*,*Identifying the 'fingerprint' of antiferromagnetic spin fluctuations in iron pnictide superconductors*, Nature Phys.**11**, 177 (2015) (STS quasiparticle interference for LiFeAs with theoretical analysis to extract information on electronic self-energy, supports antiferromagnetic spin fluctuations as the pairing glue) - T. Ritschel, J. Trinckauf, K. Koepernik, B. Büchner, M. v.
Zimmermann, H. Berger, Y. I. Joe, P. Abbamonte, and J. Geck,
*Orbital textures and charge density waves in transition metal dichalcogenides*, Nature Phys. (2015), doi:10.1038/nphys3267 (1T-TaS_{2}) - P. D. Johnson, H.-B. Yang, J. D. Rameau, G. D. Gu, Z.-H. Pan, T. Valla,
M. Weinert, and A. V. Fedorov,
*Spin-Orbit Interactions and the Nematicity Observed in the Fe-Based Superconductors*, Phys. Rev. Lett.**114**, 167001 (2015) (FeTe0.5Se0.5, ARPES) - V. Balédent, F. Rullier-Albenque, D. Colson, J. M. Ablett, and
J.-P. Rueff,
*Electronic Properties of BaFe2As2 upon Doping and Pressure: The Prominent Role of the As p Orbitals*, Phys. Rev. Lett.**114**, 177001 (2015) (x-ray absorption at As K edge; contribution of arsenic p orbitals to electronic structure is strongly affected by doping and pressure) - Y. M. Dai, H. Miao, L. Y. Xing, X. C. Wang, P. S. Wang, H. Xiao, T. Qian,
P. Richard, X. G. Qiu, W. Yu, C. Q. Jin, Z. Wang, P. D. Johnson, C. C. Homes,
H. Ding,
*Fermi surface nesting driven Fermi liquid to non-Fermi liquid crossover with suppressed superconductivity in LiFe1-xCoxAs*, arXiv:1505.00455 - B. P. P. Mallett, P. Marsik, M. Yazdi-Rizi, T. Wolf, A. E. Böhmer,
F. Hardy, C. Meingast, D. Munzar, and C. Bernhard,
*Infrared Study of the Spin Reorientation Transition and Its Reversal in the Superconducting State in Underdoped Ba1-xKxFe2As2*, Phys. Rev. Lett.**115**, 027003 (2015) - M. D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, J.
Béard, F. Hardy, A. McCollam, A. Narayanan, S. F. Blake, T. Wolf, A.
A. Haghighirad, C. Meingast, A. J. Schofield, H. v. Löhneysen, Y.
Matsuda, A. I. Coldea, and T. Shibauchi,
*Dichotomy between the Hole and Electron Behavior in Multiband Superconductor FeSe Probed by Ultrahigh Magnetic Fields*, Phys. Rev. Lett.**115**, 027006 (2015) - X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, and
K. F. Mak,
*Strongly enhanced charge-density-wave order in monolayer NbSe2*, Nature Nano. (2015), doi:10.1038/nnano.2015.143 - T. Kobayashi, K. Tanaka, S. Miyasaka, and S. Tajima,
*Importance of Fermi Surface Topology for In-Plane Resistivity Anisotropy in Hole- and Electron-Doped Ba(Fe1-xTMx)2As2 (TM=Cr, Mn and Co)*, arXiv:1507.04519, J. Phys. Soc. Jpn. - C. Mirri, A. Dusza, S. Bastelberger, M. Chinotti, L. Degiorgi, J.-H. Chu,
H.-H. Kuo, and I. R. Fisher,
*Origin of the Resistive Anisotropy in the Electronic Nematic Phase of BaFe2As2 Revealed by Optical Spectroscopy*, Phys. Rev. Lett.**115**, 107001 (2015) - P. Wiecki, B. Roy, D. C. Johnston, S. L. Bud'ko, P. C. Canfield, and Y.
Furukawa,
*Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR*, Phys. Rev. Lett.**115**, 137001 (2015) - Y. Feng, J. van Wezel, J. Wang, F. Flicker, D. M. Silevitch, P. B.
Littlewood, and T. F. Rosenbaum,
*Itinerant density wave instabilities at classical and quantum critical points*, Nature Phys.**11**, 865 (2015) (CDW in NbSe_{2}and SDW in elementary Cr; x-ray diffraction and modeling; show that the instabilities are primarily itinerant-electron effects) - D. Mou, A. Sapkota, H.-H. Kung, V. Krapivin, Y. Wu, A. Kreyssig, X. Zhou,
A. I. Goldman, G. Blumberg, R. Flint, and A. Kaminski,
*Discovery of an Unconventional Charge Density Wave at the Surface of K0.9Mo6O17*, Phys. Rev. Lett.**116**, 196401 (2016) (CDW at the surface at much higher temperature than in the bulk; weak electron-phonon coupling suggests purely electronic mechanism; correlations at surface enhanced by reduced dimensionality?) - F. Kretzschmar, T. Böhm, U. Karahasanovic, B. Muschler, A. Baum, D.
Jost, J. Schmalian, S. Caprara, M. Grilli, C. Di Castro, J. G. Analytis, J.-H.
Chu, I. R. Fisher, and R. Hackl,
*Critical spin fluctuations and the origin of nematic order in Ba(Fe1-xCox)2As2*, Nature Phys.**12**, 560 (2016) (Raman scattering and theory) - M. A. Tanatar, A. E. Böhmer, E. I. Timmons, M. Schütt, G.
Drachuck, V. Taufour, K. Kothapalli, A. Kreyssig, S. L. Bud'ko, P. C.
Canfield, R. M. Fernandes, and R. Prozorov
*Origin of the Resistivity Anisotropy in the Nematic Phase of FeSe*, Phys. Rev. Lett.**117**, 127001 (2016) - E. Civardi, M. Moroni, M. Babij, Z. Bukowski, and P. Carretta,
*Superconductivity Emerging from an Electronic Phase Separation in the Charge Ordered Phase of RbFe2As2*, Phys. Rev. Lett.**117**, 217001 (2016) (NMR and NQR; charge order below 140 K, different environments probed below 20 K)

- I. I. Mazin, M. D. Johannes, L. Boeri, K. Koepernik, and D. J. Singh,
*Challenge of unravelling magnetic properties of LaFeAsO*, arXiv:0806.1869 (careful discussion of various ab-initio calculations for this undoped system and of the character of its magnetic ordering)**P** - J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli,
*Competing orders in FeAs layers*, arXiv:0807.2412 - R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera,
S. Haas, and E. Dagotto,
*Magnetic and Metallic State at Intermediate Hubbard U Coupling in Multiorbital Models for Undoped Fe Pnictides*, arXiv:0812.2894 (mean-field theory for metallic antiferromagnetic state using four-band and two-band models)**P** - Y.-Z. Zhang, H. C. Kandpal, I. Opahle, H. O. Jeschke, and R.
Valentí,
*Pressure-induced structure phase transitions in iron-pnictide AFe*, arXiv:0812.2920 (also discuss magnetic instability, which is found to be different for different ions "A", to favor stripe ordering, and to vanish for tetragonal symmetry)_{2}As_{2}superconductors using ab initio molecular-dynamics calculations - V. Barzykin and L. P. Gor'kov,
*The role of striction at magnetic and structural transitions in iron-pnictides*, arXiv:0812.4277 (magneto-elastic effects) - I. I. Mazin and M. D. Johannes,
*A key role for unusual spin dynamics in ferropnictides*, Nature Physics**5**, 141 (2009) (idea of fluctuating SDW domains, which makes experimental results dependent on the experimental time scale)**P**; see also W. E. Pickett,*Iron-based superconductors: Timing is crucial*in the same issue - J. Dai, J.-X. Zhu, and Q. Si,
*f-spin physics of rare-earth iron pnictides: Influence of d-electron antiferromagnetic order on the heavy-fermion phase diagram*, Phys. Rev. B**80**, 020505(R) (2009) (theory: Kondo screening of f-electron spins is suppressed by magnetic ordering of Fe d-electron spins) - M. M. Korshunov, I. Eremin, D. V. Efremov, D. L. Maslov, and A. V.
Chubukov,
*Non-analytic spin susceptibility of a nested Fermi liquid: the case of Fe-based pnictides*, arXiv:0901.0238 - E. Manousakis, J. Ren, S. Meng, and E. Kaxiras,
*Is the nature of magnetic order in copper-oxides and in iron-pnictides different?*, arXiv:0902.3450 (qualitative discussion based on previously reported electronic structure, support a local-moment picture for the pnictides) - M. S. Laad and L. Craco,
*Anomalous Magnetic Susceptibility in Iron Pnictides: Paramagnetic Phase*, arXiv:0903.3732, Phys. Rev. B**P** - K. Kubo and P. Thalmeier,
*Multiorbital effects on antiferromagnetism in Fe pnictides*, arXiv:0903.4064 (two-orbital model, consider spin and orbital ordering) - R. R. P. Singh,
*Exchange Constants and Neutron Spectra of Iron Pnictide Materials*, arXiv:0903.4408 (on 122 compounds) - C. Xu and J. Hu,
*Field theory for magnetic and lattice structure properties of Fe*, arXiv:0903.4477_{1+y}Te_{1-x}Se_{x} - M. D. Johannes and I. Mazin,
*Microscopic origin of magnetism and magnetic interactions in ferropnictides*, arXiv:0904.3857 (take a middle route between the strongly correlated and the itinerant picture) - D. Parker and I. Mazin,
*Spin density wave coexistence and nodal lines in superconducting pnictides*, arXiv:0904.3926 - W. Lv, J. Wu, and P. Phillips,
*Jahn-Teller Effect Induces Structural Phase Transition and the Resistivity Anomaly in Iron Pnictides*, arXiv:0905.1704**P** - G.-B. Liu and B.-G. Liu,
*Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach*, arXiv:0905.2005 - P. Prelovsek, I. Sega, and T. Tohyama,
*Analysis of transport properties of iron pnictides: spin-fluctuation scenario*, arXiv:0905.4153 - M. J. Calderon, B. Valenzuela, and E. Bascones,
*Tight binding model for iron pnictides*, arXiv:0907.1259 - E. Kaneshita, T. Morinari, and T. Tohyama,
*Modeling Antiferromagnetic Phase in Iron Pnictides: Weakly Ordered State*, arXiv:0909.1081 (calculation of the optical conductivity) - M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto,
*Three-Orbital model for the Pnictides*, arXiv:0910.1573 - R. Applegate, J. Oitmaa, and R. R. P. Singh,
*Spin-waves in the J*, arXiv:0910.1793 (anisotropic Heisenberg model, see also the following reference)_{1a}-J_{1b}-J_{2}orthorombic square-lattice Heisenberg models: Application to the iron pnictide materials - D.-X. Yao and E. W. Carlson,
*Magnetic Excitations of Undoped Iron Oxypnictides*, arXiv:0910.2528 (anisotropic Heisenberg model, see also the preceding reference) - S. Zhou and Z. Wang,
*Electron correlation and spin density wave order in iron pnictides*, arXiv:0910.2707 - N. Harrison and S. E. Sebastian,
*Dirac nodal pockets in the antiferromagnetic parent phase of FeAs superconductors*, arXiv:0910.4199 (propose graphene-like Dirac cones in the quasiparticle dispersion in the SDW state of 122-compounds) - F. Cricchio, O. Granas, and L. Nordstrom,
*The low spin moment in LaOFeAs is due to a hidden multipole order caused by spin orbital ordering*, arXiv:0911.1342 - I. Eremin and A. V. Chubukov,
*Magnetic degeneracy and hidden metallicity of the spin density wave state in ferropnictides*, arXiv:0911.1754 - H. Ishida and A. Liebsch,
*Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates*, arXiv:0911.1940 (strong-coupling picture, unified description of pnictides and cuprates) - B. Schmidt, M. Siahatgar, and P. Thalmeier,
*Frustrated local moment models for Fe-pnictide magnetism*, arXiv:0911.5664 - P. Prelovsek and I. Sega,
*Anomalous normal-state properties of iron pnictides: phenomenological theory*, arXiv:0912.3122 - H. Lee, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí,
*Possible origin of the reduced magnetic moment in iron pnictides: Frustrated versus unfrustrated bands*, arXiv:0912.4024 (DMFT) - Z. P. Yin and W. E. Pickett,
*Crystal Symmetry and Magnetic Order in Iron Pnictides: a Tight Binding Wannier Function Analysis*, Phys. Rev. B**81**, 174534 (2010) (effect of antiferromagnetic order on orbital shape and occupation) - M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada,
*Theoretical evidence for strong correlations and incoherent metallic state in FeSe*, Phys. Rev. B**82**, 064504 (2010) (ab-initio study) - Y.-Z. Zhang, I. Opahle, H. O. Jeschke, and R. Valentí,
*Itinerant Nature of Magnetism in Iron Pnictides: A first principles study*, arXiv:1001.0536 - L. de' Medici, S. R. Hassan, and M. Capone,
*Genesis of coexisting itinerant and localized electrons in Iron Pnictides*, arXiv:1001.1098 - H. Eschrig, A. Lankau, and K. Koepernik,
*Calculated Cleavage Behavior and Surface States of LaOFeAs*, arXiv:1001.1127 (DFT) - A. M. Tsvelik,
*Striped pnictides as new strongly correlated systems*, arXiv:1001.2528 - L. P. Gor'kov and G. B. Teitel'baum,
*On spatial non-homogeneity in iron pnictides: formation of the soliton phase*, arXiv:1001.4641 - J. Knolle, I. Eremin, A. V. Chubukov, and R. Moessner,
*Theory of itinerant magnetic excitations in the SDW phase of iron-based superconductors*, arXiv:1002.1668**P** - E. Bascones, M. J. Calderon, and B. Valenzuela,
*Low magnetization and anisotropy in the antiferromagnetic state of undoped iron pnictides*, arXiv:1002.2584 (model based on 2 iron ions per unit cell with 5 orbitals each) - E. Kaneshita and T. Tohyama,
*Spin and Charge Dynamics Ruled by the Antiferromagnetic Order in Iron Pnictides*, arXiv:1002.2701 (imaginary part of spin susceptibility, showing spin-wave dispersion, using Kuroki model)**P** - W. Lv, F. Krüger, and P. Phillips,
*Orbital Ordering and Unfrustrated (pi,0) Magnetism from Degenerate Double Exchange in the Pnictides*, arXiv:1002.3165 (based on a spin-fermion model) - Y. Gao, T. Zhou, C. S. Ting, and W.-P. Su,
*Spin dynamics in electron-doped pnictide superconductors*, arXiv:1003.2609 - M. D. Johannes, I. I. Mazin, and D. S. Parker,
*Effect of doping and pressure on magnetism and lattice structure of Fe-based superconductors*, arXiv:1004.2160 (DFT) - L. Ke, M. van Schilfgaarde, J. J. Pulikkotil, T. Kotani, and
V. P. Antropov,
*Coexistence of Spin Waves and Stoner Excitations in CaFe*, arXiv:1004.2934 (based on DFT, Stoner excitations are dominant at low energies and are sensitive to lattice deformations)_{2}As_{2} - A. Cano, M. Civelli, I. Eremin, and I. Paul,
*Interplay of magnetic and structural transitions in Fe-based pnictide superconductors*, arXiv:1004.4145 (Ginzburg-Landau theory) - M. Daghofer, Q. Luo, R. Yu, D. Yao, A. Moreo, and E. Dagotto,
*Orbital weight redistribution triggered by spin order in the pnictides*, arXiv:1004.4803 - J. Knolle, I. Eremin, A. Akbari, and R. Moessner,
*Quasiparticle interference in the spin-density wave phase of iron-based superconductors*, arXiv:1004.5460 - Y.-Z. Zhang, H. Lee, I. Opahle, H. O. Jeschke, and R. Valentí,
*Importance of Fermi Surface Nesting and Quantum Fluctuations for the Magnetism in Iron Pnictides*, arXiv:1005.1170 (DFT and DMFT, support dominantly nesting-driven magnetism); J. Ferber, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí,*Analysis of spin density wave conductivity spectra of iron pnictides in the framework of density functional theory*, arXiv:1005.1374 (DFT: GGA and GGA+*U*, optical conductivity, correlation effects are found not to be negligible) - R. Yu and Q. Si,
*Mott Transition in Multi-Orbital Models for Iron Pnictides*, arXiv:1006.2337 - T. Misawa, K. Nakamura, and M. Imada,
*Magnetic Properties of Ab initio Model for Iron-Based Superconductors LaFeAsO*, arXiv:1006.4812 (variational Monte Carlo simulations for a model with direct Coulomb and exchange interactions) - N. Raghuvanshi and A. Singh,
*Spin waves in the (0,pi) and (0,pi,pi) ordered SDW states of the t-t' Hubbard model: Application to doped iron pnictides*, arXiv:1007.0812 - Q. Luo, G. Martins, D.-X. Yao, M. Daghofer, R. Yu, A. Moreo, and E.
Dagotto,
*Neutron and ARPES Constraints on the Couplings of the Multiorbital Hubbard Model for the Pnictides*, arXiv:1007.1436 (theory, orbital models) - M. A. Metlitski and S. Sachdev,
*Instabilities near the onset of spin density wave order in metals*, arXiv:1007.1968 - Z. P. Yin, K. Haule, and G. Kotliar,
*Magnetism and Charge Dynamics in Iron Pnictides*, arXiv:1007.2867 (LDA + DMFT for BaFe_{2}As_{2}, suggest that magnetic order is intermediate between metallic SDW and local moments) - B. Valenzuela, E. Bascones, and M. J. Calderón,
*Conductivity anisotropy in the antiferromagnetic state of iron pnictides*, arXiv:1007.3483 (five-band model, assumption of strong orbital ordering leads to an effect opposite to what is observed) - A. Akbari, J. Knolle, I. Eremin, and R. Moessner,
*Quasiparticle interference in iron-based superconductors*, arXiv:1008.4930 (T-matrix theory, with application to Fourier-transformed STM) - F. Yndurain,
*Electron-phonon interaction in Fe-based superconductors: Coupling of magnetic moments with phonons in LaFeAsO*, arXiv:1009.4909 (ab-initio calculations with supercell approach to doping [VCA is found to give very similar results, though], large electron-A_{1-x}F_{x}_{1g}-phonon coupling in AFM phase since this phonon modulates the Fe magnetic moment, which affects all bands) - M. S. Laad and L. Craco,
*Theory of Orbital Nematicity in Underdoped Iron Arsenides*, arXiv:1010.2940 - K. Kubo and P. Thalmeier,
*Correlation Effects on Antiferromagnetism in Fe Pnictides*, arXiv:1010.4626 (variational Monte Carlo) - M. Holt, O. P. Sushkov, D. Stanek, and G. S. Uhrig,
*Iron pnictide parent compounds: Three dimensional generalization of the J*, arXiv:1010.5551_{1}-J_{2}Heisenberg model on a square lattice and role of the interlayer coupling J_{c} - J. Kang and Z. Tesanovic,
*Theory of Valley-Density Wave and Hidden Order in Iron-Pnictides*, arXiv:1011.2499 (nearly degenerate density waves, true equilibrium state claimed to prefers SDW coexisting with perpendicular "pocket density wave") - O. K. Andersen and L. Boeri,
*On the multi-orbital band structure and itinerant magnetism of iron-based superconductors*, Ann. Physik (Berlin)**523**, 8 (2011), arXiv:1011.1658 (DFT, mapped to tight-binding Hamiltonian, explain up/downfolding of 2D Brillouin zone) - T. Schickling, F. Gebhard, and J. Bünemann,
*Antiferromagnetic Order in Multiband Hubbard Models for Iron Pnictides*, Phys. Rev. Lett.**106**, 146402 (2011) (variational Gutzwiller approach, find that Hartree-Fock approximation is not sufficient) - I. Paul,
*Magnetolastic Quantum Fluctuations and Phase Transitions in the Iron Superconductors*, Phys. Rev. Lett.**107**, 047004 (2011) (simplest non-local symmetry-allowed coupling between O(3) magnetization field and displacement field, use generic forms for propagators, lowest-order selfenergy corrections due to the coupling; addresses two-step transition and distinction between 1111 and 11 compounds)**P** - N. Raghuvanshi and A. Singh,
*The role of Hund's coupling in the stabilization of the (0, π) ordered spin density wave state within the minimal two-band model for iron pnictides*, J. Phys.: Condens. Matter**23**, 312201 (2011) - C.-H. Lin, T. Berlijn, L. Wang, C.-C. Lee, W.-G. Yin, and W. Ku,
*One-Fe versus Two-Fe Brillouin Zone of Fe-Based Superconductors: Creation of the Electron Pockets by Translational Symmetry Breaking*, Phys. Rev. Lett.**107**, 257001 (2011) (DFT, study of unfolding) - A. F. Kemper, M. M. Korshunov, T. P. Devereaux, J. N. Fry, H.-P. Cheng,
and P. J. Hirschfeld,
*Anisotropic quasiparticle lifetimes in Fe-based superconductors*, Phys. Rev. B**83**, 184516 (2011) (from RPA at zero temperature)**P** - W.-H. Ko and P. A. Lee,
*Magnetism and Mott Transition - A Slave-rotor Study*, arXiv:1101.5183 (for a orbitally symmetric two-orbital model) - Y.-Z. You, F. Yang, S.-P. Kou, and Z.-Y. Weng,
*Magnetic and superconducting instabilities in a hybrid model of itinerant/localized electrons for iron pnictides*, arXiv:1102.3200 (spin-fermion model) - I. R. Shein and A. L. Ivanovskii,
*Elastic properties and inter-atomic bonding in new superconductor KFe2Se2 from first principles calculations*, arXiv:1102.3248 (ab-initio study of FeSe-based 122 compounds);*Structural, electronic properties and Fermi surface of ThCr2Si2-type tetragonal KFe2S2, KFe2Se2, and KFe2Te2 phases as parent systems of new ternary iron-chalcogenide superconductors*, arXiv:1102.4173 (ab-initio; find two large, quasi-two-dimensional electron pockets around the X point and a three-dimensional*electron*pocket around the Z point at (0,0,π), no pocket at Γ) - J. Knolle, I. Eremin, and R. Moessner,
*Multiorbital Spin Susceptibility in a Magnetically Ordered State - Orbital versus Excitonic Spin Density Wave Scenario*, arXiv:1102.5532**P** - H. Kontani, T. Saito, and S. Onari,
*Origin of Orthorhombic Transition, Magnetic Transition, and Shear Modulus Softening in Iron Pnictide Superconductors: Analysis based on the Orbital Fluctuation Theory*, arXiv:1103.3360 (orbital ordering and fluctuations are essential for SDW formation and s_{++}-wave superconductivity, respectively; Hubbard and exchange interactions are included)**P** - E. Krüger and H. P. Strunk,
*The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach*, arXiv:1104.0257 - A. H. Nevidomskyy,
*Interplay of orbital and spin ordering in the iron pnictides*, arXiv:1104.1747 (ab-initio calculations and Landau theory) - S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V.
Chubukov,
*Evolution of superconductivity in Fe-based systems with doping*, arXiv:1104.1814 - D. Stanek, O. P. Sushkov, and G. S. Uhrig,
*Self-consistent spin-wave theory for a frustrated Heisenberg model with biquadratic exchange in the columnar phase and its application to iron pnictides*, arXiv:1104.1954 - Z. P. Yin, K. Haule, and G. Kotliar,
*Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides*, arXiv:1104.3454 (DFT+DMFT) - D.-Y. Liu, Y.-M. Quan, D.-M. Chen, L.-J. Zou, and H.-Q. Lin,
*Orbital density wave induced by electron-lattice coupling in orthorhombic iron pnictides*, arXiv:1104.4575 - R. M. Fernandes, E. Abrahams, and J. Schmalian,
*Anisotropic in-plane resistivity in the nematic phase of the iron pnictides*, arXiv:1105.3906 (related to theory of resistivity close to antiferromagnetic QCP) - W. Lv and P. Phillips,
*Orbitally and Magnetically Induced Anisotropy in Iron-based Superconductors*, arXiv:1105.4630 (five-orbital model, mean-field theory allowing for orbital and magnetic order) - T. Machida, K. Kogure, T. Kato, H. Takeya, T. Mochiku, S. Ooi, Y.
Mizuguchi, Y. Takano, H. Sakata, and K. Hirata,
*Unidirectional Electronic Order in the Parent State of Iron-Chalcogenide Superconductor Fe*, arXiv:1105.4754_{1+delta}Te - G.-Q. Liu,
*Orbital-spin ordering in the striped antiferromagnetic state of iron-based superconductors*, arXiv:1105.5412 (LSDA+U) - N. Raghuvanshi, S. Ghosh, R. Ray, D. Kumar Singh, and A. Singh,
*Magnetic excitations in iron pnictides*, arXiv:1106.4421 (single-band model with intra- and intersite exchange couplings) - J. Hu, B. Xu, W. Liu, N. Hao, and Y. Wang,
*An unified minimum effective model of magnetism in iron-based superconductors*, arXiv:1106.5169 (isotropic spin-only model with biquadratic interaction) - M. Tomic, R. Valentí, and H. O. Jeschke,
*Uniaxial versus hydrostatic pressure-induced phase transitions in CaFe2As2 and BaFe2As2*, arXiv:1106.5623 - S. Pandey, H. Kontani, D. S. Hirashima, R. Arita, and H. Aoki,
*Spin Hall effect in iron-based superconducting materials: An effect of Dirac point*, arXiv:1107.0122 (KFe_{2}As_{2}in particular has a slightly gapped Dirac cone near the point P = (π,0,π), this leads to a large spin Hall effect) - C.-H. Lin, T. Berlijn, L. Wang, C.-C. Lee, W.-G. Yin, and W. Ku,
*One-Fe versus Two-Fe Brillouin Zone of Fe-Based Superconductors: Creation of the Electron Pockets via Translational Symmetry Breaking*, arXiv:1107.1485 - L. Hao, C.-C. Lee, and T. K. Lee,
*Impairment of double exchange mechanism in electron transport of iron pnictides*, arXiv:1107.1952 - M. J. Calderon, G. Leon, B. Valenzuela, and E. Bascones,
*Magnetic interactions in iron superconductors revisited*, arXiv:1107.2279 - S. Konbu, K. Nakamura, H. Ikeda, and R. Arita,
*Fermi-Suface Evolution by Transition-metal Substitution in the Iron-based Superconductor LaFeAsO*, arXiv:1108.0585 (Co and Ni substitution, DFT supercell) - L. Craco, M. S. Laad, and S. Leoni,
*Unconventional Mott Transition in KxFe2-ySe2*, arXiv:1109.0116 - T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen,
and W. Weber,
*Gutzwiller theory of band magnetism in LaOFeAs*, arXiv:1109.0929 (Gutzwiller theory for eight-band model based on DFT) - Y. X. Yao, J. Schmalian, C. Z. Wang, K. M. Ho, and G. Kotliar,
*A comparative study of the electronic and magnetic properties of BaFe_2As_2 and BaMn_2As_2 using the Gutzwiller approximation*, arXiv:1109.2679 (LDA + Gutzwiller projection) - T. T. Ong and P. Coleman,
*Local Quantum Criticality of an Iron-Pnictide Tetrahedron*, arXiv:1109.4131 - A. Akbari, I. Eremin, and P. Thalmeier,
*RKKY interaction in SDW phase of iron-based superconductors*, arXiv:1109.4643 (and also in the disordered phase) - H. Huang, Y. Gao, D. Zhang, and C. S. Ting,
*Impurity-induced quasiparticle interference in the parent compounds of iron-pnictide superconductors*, arXiv:1109.5928 - C. Liu, D.-X. Yao, and A. W. Sandvik,
*Two-orbital quantum spin model of magnetism in the iron pnictides*, arXiv:1110.0761 (despite the title, a pure spin model; variational cluster mean-field approach) - R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J. Schmalian,
*Preemptive nematic order, pseudogap, and orbital order in the iron pnictides*, arXiv:1110.1893**P** - Y. Inoue, Y. Yamakawa, and H. Kontani,
*Impurity-Induced Electronic Nematic State in Iron-Pnictide Superconductors*, arXiv:1110.2401 - W.-C. Lee and P. W. Phillips,
*Non-Fermi Liquid due to Orbital Fluctuations in Iron Pnictide Superconductors*, arXiv:1110.5917 (soft overdamped collective modes appear close to structural QCP and lead to non-Fermi-liquid behavior) - J. Ferber, K. Foyevtsova, R. Valentí, and H. O. Jeschke,
*Effects of correlation in LiFeAs*, arXiv:1111.1620 (DFT and DMFT) - A. Ciechan, M. J. Winiarski, and M. Samsel-Czekala,
*The Pressure Effects on Electronic Structure of Iron Chalcogenide Superconductors FeSe*, arXiv:1111.3523_{1-x}Te_{x} - S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto,
*Transport anisotropy of the pnictides studied via Monte Carlo simulations of the Spin-Fermion model*, arXiv:1111.6994 - A. Toschi, R. Arita, P. Hansmann, G. Sangiovanni, and K. Held,
*Quantum dynamical screening of the local magnetic moment in Fe-based superconductors*, arXiv:1112.3002 (LDA+DMFT) - T. Berlijn, C.-H. Lin, W. Garber, and W. Ku,
*Do Transition Metal Substitutions Dope Carriers in Iron Based Superconductors?*, arXiv:1112.4858 (DFT with VCA, emphasize the importance of disorder) - T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen,
and W. Weber,
*Gutzwiller Theory of Band Magnetism in LaOFeAs*, Phys. Rev. Lett.**108**, 036406 (2012) (8-band tight-binding model from DFT, added Hubbard*U*and Hund*J*) - T. Kaneko, K. Seki, and Y. Ohta,
*Excitonic insulator state in the two-orbital Hubbard model: Variational cluster approach*, Phys. Rev. B**85**, 165135 (2012) (phase diagram) - J. Hu and N. Hao,
*S*, Phys. Rev. X_{4}Symmetric Microscopic Model for Iron-Based Superconductors**2**, 021009 (2012); see also Viewpoint: D. Podolsky,*Untangling the Orbitals in Iron-Based Superconductors*, Physics**5**, 61 (2012) - C. Monney, G. Monney, P. Aebi, and H. Beck,
*Electron-hole instability in 1T-TiSe*, New J. Phys._{2}**14**, 075026 (2012) (also including phonon effects)**P** - S. Ducatman, N. B. Perkins, and A. Chubukov,
*Magnetism in Parent Iron Chalcogenides: Quantum Fluctuations Select Plaquette Order*, Phys. Rev. Lett.**109**, 157206 (2012) (Fe_{1+y}Te, propose unusual magnetic state) - J. M. Tomczak, M. van Schilfgaarde, and G. Kotliar,
*Many-Body Effects in Iron Pnictides and Chalcogenides: Nonlocal Versus Dynamic Origin of Effective Masses*, Phys. Rev. Lett.**109**, 237010 (2012) (DFT, GW approximation) - M. Daghofer, A. Nicholson, and A. Moreo,
*Spectral density in a nematic state of models for iron pnictides*, arXiv:1202.3656 - J.-H. Chu, H.-H. Kuo, J. G. Analytis, and I. R. Fisher,
*Divergent nematic susceptibility in an iron arsenide superconductor*, arXiv:1203.3239 (how to detect a nematic phase) - R. M. Fernandes and J. Schmalian,
*Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides*, arXiv:1204.3694 - M. Daghofer and A. Fischer,
*Breaking of four-fold lattice symmetry in a model for pnictide superconductors*, arXiv:1205.5102 - J. Kang and Z. Tesanovic,
*Dimer Impurity Scattering, "Reconstructed" Nesting and Density-Wave Diagnostics in Iron Pnictides*, arXiv:1205.5280 - W.-C. Lee, W. Lv, J. M. Tranquada, and P. W. Phillips,
*Impact of Dynamic Orbital Correlations on Magnetic Excitations in the Normal State of Iron-Based Superconductors*, arXiv:1206.4095 (understanding neutron-scattering experiments from an orbital model) - K. W. Lo, W.-C. Lee, and P. W. Phillips,
*Non-Fermi Liquid behavior at the Orbital Ordering Quantum Critical Point in the Two-Orbital Mode*, arXiv:1207.4206 (two degenerate orbitals, relevant for the iron pnictides and other compounds) - N. N. Hao, Y. Wang, and J. Hu,
*Oriented gap opening in the magnetically ordered state of Iron-pnictides: an impact of intrinsic unit cell doubling on the Fe square lattice by As atoms*, arXiv:1207.6798 - L. P. Gor'kov and G. B. Teitel'baum,
*On the dual role of the d-electrons in iron-pnictides*, arXiv:1208.3740 (propose that the SDW is formed due to RKKY interaction between local iron d moments, not due to nesting) - H. B. Rhee and W. E. Pickett,
*Contrast of LiFeAs with isostructural, isoelectronic, and non-superconducting MgFeGe*, arXiv:1208.4180 (DFT beyond GGA; electron structure of the two materials is very similar, no full answer as to why superconducting properties are different, modified Becke-Johnson exchange potential overall not improving description of LiFeAs) - J. M. Tomczak, M. van Schilfgaarde, and G. Kotliar,
*Many-body effects in iron pnictides and chalcogenides - non-local vs dynamic origin of effective masses*, arXiv:1209.2213 (DFT with quasi-particle selfconsistent GW approximation) - J. Lee, P. Strack, and S. Sachdev,
*Quantum criticality of reconstructing Fermi surfaces*, arXiv:1209.4644 (due to SDW formation, fRG) - R. Yu, Q. Si, P. Goswami, and E. Abrahams,
*Electron Correlation and Spin Dynamics in Iron Pnictides and Chalcogenides*, arXiv:1210.5017 (from a strong-coupling viewpoint, also review of experiments) - M. Tomic, R. Valenti, and H. O. Jeschke,
*Uniaxial strain effects on the structural and electronic properties of BaFe2As2 and CaFe2As2*, arXiv:1210.5504 (DFT) - K. Kikoin, S.-L. Drechsler, J. Malek, and J. van den Brink,
*The dual nature of As-vacancies in LaFeAsO-derived superconductors: magnetic moment formation while preserving superconductivity*, arXiv:1210.6535 - N. Lanata, H. U. R. Strand, G. Giovannetti, B. Hellsing, L. de' Medici,
and M. Capone,
*Orbital selectivity in Hund's metals: The iron chalcogenides*, Phys. Rev. B**87**, 045122 (2013) (interplay of*U*and Hund coupling*J*, explain bad-metal behavior) - S. Liang, A. Moreo, and E. Dagotto,
*Nematic State of Pnictides Stabilized by Interplay Between Spin, Orbital, and Lattice Degrees of Freedom*, Phys. Rev. Lett.**111**, 047004 (2013) (Monte Carlo) - R. M. Fernandes, A. E. Böhmer, C. Meingast, and J. Schmalian,
*Scaling between Magnetic and Lattice Fluctuations in Iron Pnictide Superconductors*, Phys. Rev. Lett.**111**, 137001 (2013) (analyzing experimental data, support magnetic origin of structural transition) - A. O. Sboychakov, A. V. Rozhkov, K. I. Kugel, A. L. Rakhmanov, and F.
Nori,
*Electronic phase separation in iron pnictides*, arXiv:1304.2175 (phase separation between commensurate and incommensurate SDW upon doping away from optimum) - V. Cvetkovic and O. Vafek,
*Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors*, arXiv:1304.3723 (analysis of SDW order and also of superconducting order, singlet-triplet mixing) - K. W. Song, Y.-C. Liang, H. Lim, and S. Haas,
*Possible Nematic Order Driven by Magnetic Fluctuations in Iron Pnictides*, arXiv:1304.4617 (Hubbard-Stratonovich decoupling of interactions, density-density interaction between X and Y electron pockets is important) - S. Ghosh and A. Singh,
*Orbital order induced stabilization of the (pi,0) ordered magnetic state in a minimal two-band model for iron pnictides*, arXiv:1306.6727 - A. E. Koshelev,
*Linear magnetoconductivity in multiband spin-density-wave metals with nonideal nesting*, arXiv:1307.7184 (regime of linear magnetoresistance due to strongly curved portions of reconstructed Fermi surfaces [ends of bananas]) - L. de' Medici, G. Giovannetti, and M. Capone,
*Selective Mott Physics as a Key to Iron Superconductors*, Phys. Rev. Lett.**112**, 177001 (2014) (collection of experimental data and theory, mainly DFT plus mean-field; supports orbital-selective Mottness in iron pnictides) - S. Avci, O. Chmaissem, J. M. Allred, S. Rosenkranz, I. Eremin, A. V.
Chubukov, D. E. Bugaris, D. Y. Chung, M. G. Kanatzidis, J.-P Castellan, J. A.
Schlueter, H. Claus, D. D. Khalyavin, P. Manuel, A. Daoud-Aladine, and
R. Osborn,
*Magnetically driven suppression of nematic order in an iron-based superconductor*, Nature Comm.**5**, 3845 (2014) (neutron diffraction on doping series of Ba_{1-x}Na_{x}Fe_{2}As_{2}, find a C_{4}-symmetric antiferromagnetic phase, close to the vanishing of antiferromagnetic order with increasing doping, that partially coexists with superconductivity; also mean-field theory for the additional transition to the C_{4}-symmetric state, based on simple band model) - H. Kontani and Y. Yamakawa,
*Linear Response Theory for Shear Modulus C66 and Raman Quadrupole Susceptibility: Evidence for Nematic Orbital Fluctuations in Fe-based Superconductors*, Phys. Rev. Lett.**113**, 047001 (2014) (nematicity due to orbital physics) - M. N. Gastiasoro and B. M. Andersen,
*Enhancement of Magnetic Stripe Order in Iron-Pnictide Superconductors from the Interaction between Conduction Electrons and Magnetic Impurities*, Phys. Rev. Lett.**113**, 067002 (2014) - T. Kaneko and Y. Ohta,
*Roles of the Hund's rule coupling in the excitonic density-wave states*, arXiv:1407.4872 (Hund's rule not surprisingly stabilizes excitonic SDW over CDW, also in the variational cluster approximation, the competing SDW and CDW states are characterized) - X. Wang, J. Kang, and R. M. Fernandes,
*Magnetic order without tetragonal symmetry-breaking in iron arsenides: microscopic mechanism and spin-wave spectrum*, arXiv:1410.6789 (double-**Q**, orthomagnetic ordering, motivated by experiment) - M. N. Gastiasoro, I. Paul, Y. Wang, P. J. Hirschfeld, and B. M. Andersen,
*Emergent Defect States as a Source of Resistivity Anisotropy in the Nematic Phase of Iron Pnictides*, Phys. Rev. Lett.**113**, 127001 (2014) (anisotropic scatterers in the nematic phase ["nematogens"] as the main origin of anisotropic transport) - M. N. Gastiasoro and B. M. Andersen,
*Competing magnetic double-Q phases and superconductivity-induced re-entrance of C*, arXiv:1502.05859 (start from five-orbital Ikeda model, mean-field theory, address tetragonal magnetic phase)_{2}magnetic stripe order in iron pnictides**P** - Q. Zhang, R. M. Fernandes, J. Lamsal, J. Yan, S. Chi, G. S. Tucker,
D. K. Pratt, J. W. Lynn, R. W. McCallum, P. C. Canfield, T. A. Lograsso, A.
I. Goldman, D. Vaknin, and R. J. McQueeney,
*Neutron-Scattering Measurements of Spin Excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a Sharp Enhancement of Spin Fluctuations by Nematic Order*, Phys. Rev. Lett.**114**, 057001 (2015) (include theory; supports spin-fluctuation origin of nematicity in these compounds) - Y. Wang, M. N. Gastiasoro, B. M. Andersen, M. Tomic, H. O. Jeschke, R.
Valentí, I. Paul, and P. J. Hirschfeld,
*Effects of Lifshitz Transition on Charge Transport in Magnetic Phases of Fe-Based Superconductors*, Phys. Rev. Lett.**114**, 097003 (2015) (explain drop of resistivity below Néeel temperature*T*in 122 parent compound in the framework of strong impurity scattering disregarding spin fluctuations; decrease in scattering has to dominate over decrease in carrier concentration below_{N}*T*, i.e., system is in dirty limit; hard to explain why resistivity in doped samples tends to increase around_{N}*T*; they also assume vanishing of all "banana" pockets, which is forbidden by topology)_{N}**P** - H. Usui, K. Suzuki, and K. Kuroki,
*Origin of the non-monotonic variance of T*, Sci. Rep._{c}in the 1111 iron based superconductors with isovalent doping**5**, 11399 (2015) (study dependence of properties on iron-pnictogen-iron bond angle, use DFT-GGA for band structure, then add standard interaction terms and use FLEX and linearized Eliashberg equation to describe leading superconducting instability) - J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M.
Fernandes, and R. Valentí,
*Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides*, Nature Phys.**11**, 953 (2015) (spin-only Heisenberg model with biquadratic exchange treated at mean-field level; also DFT calculations, agreement with Heisenberg model is not very good, as expected for itinerant systems; DFT finds antiferromagnetic ground states of FeSe, in contradiction to experiment; also calculate the parameters of the Heisenberg model within DFT, find relatively large biquadratic and longer-distance exchange for FeSe, which is thus strongly frustrated, discuss FeSe, also under pressure, compared to FeTe)**P** - I. Leonov, S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt,
*Correlation-Driven Topological Fermi Surface Transition in FeSe*, Phys. Rev. Lett.**115**, 106402 (2015) (DFT+DMFT, find a Lifshitz transition)**P** - F. Wang, S. A. Kivelson, and D.-H. Lee,
*Nematicity and quantum paramagnetism in FeSe*, Nature Phys.**11**, 959 (2015) (explained in terms of the Berry phase of skyrmions)**P** - R. Yu and Q. Si,
*Antiferroquadrupolar and Ising-Nematic Orders of a Frustrated Bilinear-Biquadratic Heisenberg Model and Implications for the Magnetism of FeSe*, Phys. Rev. Lett.**115**, 116401 (2015) (2D spin-only model; employ classical Monte Carlo simulations, zero-temperature mean-field approximation, and, for the quantum model, a semiclassical variational approach due to Läuchli*et al.*) - Y.-T. Tam, D.-X. Yao, and W. Ku,
*Itinerancy-Enhanced Quantum Fluctuation of Magnetic Moments in Iron-Based Superconductors*, Phys. Rev. Lett.**115**, 117001 (2015)**P** - M. H. Christensen, J. Kang, B. M. Andersen, and R. M. Fernandes,
*Spin-Driven Nematic Instability in Realistic Microscopic Models: Application to Iron-Based Superconductors*, arXiv:1510.01389 (beyond RPA)**P** - S. Onari, Y. Yamakawa, and H. Kontani,
*Sign-Reversing Orbital Polarization in the Nematic Phase of FeSe due to the C*, Phys. Rev. Lett._{2}Symmetry Breaking in the Self-Energy**116**, 227001 (2016) (self-consistent vertex-correction theory)

- D. Chernyshov, H.-B. Bürgi, M. Hostettler, and K. W.
Törnroos,
*Landau theory for spin transition and ordering phenomena in Fe(II) compounds*, Phys. Rev. B**70**, 094116 (2004) - R. Raghunathan, J.-P. Sutter, L. Ducasse, C. Desplanches, and S.
Ramasesha,
*Microscopic Model for High-spin vs. Low-spin ground state in [Ni*, cond-mat/0511594_{2}M(CN)_{8}] (M=Mo^{V}, W^{V}, Nb^{IV}) magnetic clusters - T. Tsuchiya, R. M. Wentzcovitch, C. R. S. da Silva, and S. de
Gironcoli,
*Spin Transition in Magnesiowüstite in Earth's Lower Mantle*, Phys. Rev. Lett.**96**, 198501 (2006) (LDA+U supercell with ordered Fe positions, Hubbard-U is computed)**P** - L. Wang and A. W. Sandvik,
*Low-Energy Dynamics of the Two-Dimensional S=1/2 Heisenberg Antiferromagnet on Percolating Clusters*, Phys. Rev. Lett.**97**, 117204 (2006) - Y. Konishi, H. Tokoro, M. Nishino, and S. Miyashita,
*Magnetic Properties and Metastable States in Spin-Crossover Transition of Co-Fe Prussian Blue Analogues*, cond-mat/0610500 (mean-field theory and classical Monte Carlo simulations) - M. Nishino, K. Boukheddaden, Y. Konishi, and S. Miyashita,
*Simple Two-Dimensional Model for the Elastic Origin of Cooperativity among Spin States of Spin-Crossover Complexes*, Phys. Rev. Lett.**98**, 247203 (2007) - K. Boukheddaden, J. Linares, R. Tanasa, and C. Chong,
*Theoretical investigations on an axial next nearest neighbour Ising-like model for spin crossover solids: one- and two-step spin transitions*, J. Phys.: Condens. Matter**19**, 106201 (2007) (1D ANNNI-type model) - S. M. Patchedjiev, J. P. Whitehead, and K. De'Bell,
*The role of the exchange and dipolar interactions in the determination of the magnetic ordering of a two-dimensional lattice with random vacancies*, J. Phys.: Condens. Matter**19**, 196207 (2007) - A. Gordillo-Guerrero and J. J. Ruiz-Lorenzo,
*Lack of Self-Averaging in the Three Dimensional Site Diluted Heisenberg Model at the critical point*, cond-mat/0703820, J. Stat. Mech. (2007), P06014 (quenched dilution on simple cubic lattice, find agreement with Harris criterion, i.e., same universality class as for the undiluted lattice) - D. J. Priour Jr. and S. Das Sarma,
*The critical behavior of three dimensional Heisenberg models on disordered lattices: Possible violation of Harris criterion in diluted magnetic semiconductors*, arXiv:0710.5735 (site- and bond-diluted Heisenberg models, critical exponents are found, from classical MC simulations, to depend on disorder, in apparent disagreement with the Harris criterion) - H. O. Jeschke, L. A. Salguero, B. Rahaman, C. Buchsbaum, V. Pashchenko,
M. U. Schmidt, T. Saha-Dasgupta, and R. Valentí,
*Microscopic modeling of a spin crossover transition*, New J. Phys.**9**, 448 (2007) (DFT and MD for a model spin-crossover compound based on Fe(II) and triazole ligands, also has a shorter experimental part) - E. Agliari, A. Barra, and F. Camboni,
*Criticality in diluted ferromagnet*, arXiv:0804.4503 (apparently Ising model on random network) - S. Shi, G. Schmerber, J. Arabski, J.-B. Beaufrand, D. J. Kim, S. Boukari,
M. Bowen, N. T. Kemp, N. Viart, G. Rogez, E. Beaurepaire, H. Aubriet, J.
Petersen, C. Becker, and D. Ruch,
*Study of molecular spin-crossover complex Fe(phen)*, Appl. Phys. Lett._{2}(NCS)_{2}thin films**95**, 043303 (2009) (current-voltage characteristics) - N. Baadji, M. Piacenza, T. Tugsuz, F. Della Sala, G. Maruccio, and
S. Sanvito,
*Electrostatic spin crossover effect in polar magnetic molecules*, Nature Mater.**8**, 813 (2009) (DFT calculation, propose spin crossover induced by an applied electric field through the Stark effect) - K. Szalowski and T. Balcerzak,
*In search of antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction*, arXiv:0901.2088 (triple layer, the two outer ones with diluted magnetic moments) - R. Yu, S. Haas, and T. Roscilde,
*Revealing Novel Quantum Phases in Quantum Antiferromagnets on Random Lattices*, arXiv:0905.0693 - L. Wang and A. W. Sandvik,
*Nature of the low-energy excitations of two-dimensional diluted Heisenberg quantum antiferromagnets*, arXiv:0909.5211 - M. Nishino, C. Enachescu, S. Miyashita, K. Boukheddaden, and F. Varret,
*Intrinsic effects of the boundary condition on the switching process of spin crossover solids*, arXiv:0910.4519 - H. Hsu, P. Blaha, M. Cococcioni, and R. M. Wentzcovitch,
*Spin-State Crossover and Hyperfine Interactions of Ferric Iron in MgSiO*, Phys. Rev. Lett._{3}Perovskite**106**, 118501 (2011) (DFT+*U*calculations; the material has iron in two sites, one of which undergoes a high-spin-to-low-spin crossover for increasing pressure) - I. S. Lyubutin, V.V. Struzhkin, A. A. Mironovich, A. G. Gavriliuk, P.
G. Naumov, J. F. Lin, S. G. Ovchinnikov, S. Sinogeikin, P. Chow, and Y. Xiao,
*Quantum critical point and spin fluctuations in the lower-mantle ferropericlase*, arXiv:1110.3956 ((Mg,Fe)O spin-crossover quantum-critical point) - T. Nakada, T. Mori, S. Miyashita, M. Nishino, S. Todo, W. Nicolazzi,
and P. A. Rikvold,
*Critical temperature and correlation length of an elastic interaction model for spin-crossover materials*, arXiv:1110.6257 (with effective long-range interaction) - A. Droghetti, D. Alf´, and S. Sanvito,
*The ground state of a spin-crossover molecule calculated by diffusion Monte Carlo*, arXiv:1204.5336 - A. Droghetti, D. Alfè, and S. Sanvito,
*Assessment of density functional theory for iron(II) molecules across the spin-crossover transition*, arXiv:1206.1293 - H. Raebiger, S. Fukutomi, and H. Yasuhara,
*Crossover of high and low spin states in transition metal complexes*, arXiv:1209.6432

- K. Park, T. Baruah, N. Bernstein, and M. R. Pederson,
*Second-order transverse magnetic anisotropy induced by disorder in the single-molecule magnet Mn*, Phys. Rev. B_{12}**69**, 144426 (2004) (DFT paper containing clear discussion of symmetry of Mn_{12}acetate and resulting magnetic anisotropies) - K. Park and M. R. Pederson,
*Effect of extra electrons on the exchange and magnetic anisotropy in the anionic single-molecule magnet Mn*, Phys. Rev. B_{12}**70**, 054414 (2004) (DFT, total spin generally increases with increasing charge, easy-axis anisotropy decreases, and an in-plane anisotropy appears; the LUMO of neutral Mn_{12}act is not degenerate, but there are further orbitals right above it) - W. Wernsdorfer, N. E. Chakov, and G. Christou,
*Determination of the magnetic anisotropy axes of single-molecule magnets*, cond-mat/0405565 (magnetometry) - O. Shafir, A. Keren, S. Maegawa, M. Ueda, A. Amato, and C. Baines,
*Demonstrating multibit magnetic memory in the Fe*, Phys. Rev. B_{8}high-spin molecule by muon spin rotation**72**, 092410 (2005) - C. H. Booth, M. D. Walter, M. Daniel, W. W. Lukens, and R. A. Andersen,
*Self-Contained Kondo Effect in Single Molecules*, Phys. Rev. Lett.**95**, 267202 (2005) (carbon ring systems, i.e., metallocenes) - J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, K. Porfyrakis, S. A. Lyon,
G. Andrew, and D. Briggs,
*Electron spin relaxation of N@C*, cond-mat/0510610, J. Chem. Phys._{60}in CS_{2}**124**, 014508 (2006) - V. Iancu, A. Deshpande, and S.-W. Hla,
*Manipulating Kondo Temperature via Single Molecule Switching*, cond-mat/0603187, Nano. Lett. - P. Messina, M. Mannini, A. Caneschi, D. Gatteschi, L. Sorace, P.
Sigalotti, C. Sandrin, P. Pittana, and Y. Manassen,
*Spin Noise Fluctuations from Paramagnetic Molecular Adsorbates on Surfaces*, cond-mat/0605075 - R. Lopez-Ruiz, F. Luis, A. Millan, C. Rillo, D. Zueco, and J. L.
Garcia-Palacios,
*Non-linear response of single-molecule magnets: field-tuned quantum-to-classical crossovers*, cond-mat/0606091 (Mn_{12}clusters, experimental paper) - F. Simon, H. Kuzmany, B. Nafradi, T. Feher, L. Forro, F. Fulop, A.
Janossy, L. Korecz, A. Rockenbauer, F. Hauke, and A. Hirsch,
*Magnetic fullerenes inside single-wall carbon nanotubes*, cond-mat/0606597 - X. Chang-Tan and J.-Q. Liang,
*EPR spectrum via entangled states for an exchange-coupled dimer of single-molecule magnets*, cond-mat/0606602, Euro. Phys. J. B**44**, 469 (2005) - A. Keren, O. Shafir, E. Shimshoni, V. Marvaud, A. Bachschmidt, and J.
Long,
*Experimental Estimates of Dephasing Time in Molecular Magnets*, Phys. Rev. Lett.**98**, 257204 (2007) (muon spin relaxation, metal-organic complexes) - Z. Salman, K. H. Chow, R. I. Miller, A. Morello, T. J. Parolin, M. D.
Hossain, T. A. Keeler, C. D. P. Levy, W. A. MacFarlane, G. D. Morris, H.
Saadaoui, D. Wang, R. Sessoli, G. G. Condorelli, and R. F. Kiefl,
*Local Magnetic Properties of a Monolayer of Mn12 Single Molecule Magnets*, arXiv:0804.4794 - D. A. Garanin,
*Density Matrix Equation for a Bathed Small System and its Application to Molecular Magnets*, arXiv:0805.0391 - M. Trif, F. Troiani, D. Stepanenko, and D. Loss,
*Spin-Electric Coupling in Molecular Magnets*, arXiv:0805.1158 (Cu_{3}, which has antiferromagnetic coupling between three spins forming a triangle) - G.-H. Kim and E. M. Chudnovsky,
*Macroscopic quantum effects generated by the acoustic wave in a molecular magnet*, arXiv:0812.3590 (model-based theory) - M. Mannini, F. Pineider, P. Sainctavit, C.
Danieli, E. Otero, C. Sciancalepore, A. M. Talarico,
M.-A. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli,
*Magnetic memory of a single-molecule quantum magnet wired to a gold surface*, Nature Materials, doi:10.1038/nmat2374 (2009) (Fe_{4}derivatives, monolayer) - D. A. Garanin and E. M. Chudnovsky,
*Self-Organized Patterns of Macroscopic Quantum Tunneling in Molecular Magnets*, Phys. Rev. Lett.**102**, 097206 (2009); D. A. Garanin,*Fronts of spin tunneling in molecular magnets*, arXiv:0904.4685; D. A. Garanin and S. Shoyeb,*Quantum deflagration and supersonic fronts of tunneling in molecular magnets*, arXiv:1112.5171; D. A. Garanin,*Theory of deflagration and fronts of tunneling in molecular magnets*, arXiv:1211.4192 (detailed paper);*Turbulent fronts of quantum detonation in molecular magnets*, arXiv:1305.1405 - S. McHugh, B. Wen, X. Ma, M. P. Sarachik, Y. Myasoedov, E. Zeldov,
R. Bagai, and G. Christou,
*Tuning Magnetic Avalanches in Mn12-ac*, arXiv:0902.0531 (experiments, support deflagration picture of Chudnovsky and Garanin) - J. Wang, Y. Liu, and Y.-C. Li,
*Magnetic Silicon Fullerene*, arXiv:0908.1494 (Eu@Si_{20}and its dimers and polymers, DFT/GGA, Eu is redicted to carry a large moment) - L. Udvardi,
*The exchange coupling between the valence electrons of the fullerene cage and the electrons of the N atoms in N@C60*, arXiv:0909.3939 (calculation using non-ab-initio quantum chemistry methods, finds a ferromagnetic exchange interaction of approximately 1 meV)^{-1,3} - Z. Salman, S. J. Blundell, S. R. Giblin, M. Mannini, L. Margheriti, E.
Morenzoni, T. Prokscha, A. Suter, A. Cornia, and R. Sessoli,
*Proximal magnetometry of monolayers of single molecule magnets on gold using polarized muons*, arXiv:0909.4634 - J. Schnack,
*Effects of frustration on magnetic molecules: a survey from Olivier Kahn till today*, arXiv:0912.0411 - C. Schroder, X. Fang, Y. Furukawa, M. Luban, R. Prozorov, F. Borsa, and K.
Kumagai,
*Spin freezing and slow magnetization dynamics in geometrically frustrated magnetic molecules with exchange disorder*, J. Phys.: Condens. Matter**22**, 216007 (2010) - X. L. Wang, M. Y. Ni, and Z. Zeng,
*Growth model investigation of Vanadium-Benzene Polymer*, arXiv:1002.4323 (GGA, relaxed positions, find one Bohr magneton per vanadium, see papers by Maslyuk*et al.*and Mokrousov*et al.*) - E. del Barco, S. Hill, C.C. Beedle, D.N. Hendrickson, I. S. Tupitsyn,
and P. C. E. Stamp,
*Tunneling and inversion symmetry in single-molecule magnets: the case of the Mn12 wheel molecule*, arXiv:1007.0949 (symmetry and Dzyaloshinski-Moriya interaction) - J. F. Nossa, M. F. Islam, C. M. Canali, and M. R. Pederson,
*First-principle studies of the spin-orbit and the Dzyaloshinskii-Moriya interactions in the Cu*, arXiv:1111.3078_{3}single-molecule magnet - S. Lindner, M. Knupfer, R. Friedrich, T. Hahn, and J. Kortus,
*Hybrid States and Charge Transfer at a Phthalocyanine Heterojunction: MnPc*, Phys. Rev. Lett.^{δ+}/F_{16}CoPc^{δ-}**109**, 027601 (2012) - L. Horváthová, M. Dubecký, L. Mitas, and I. Stich,
*Spin Multiplicity and Symmetry Breaking in Vanadium-Benzene Complexes*, Phys. Rev. Lett.**109**, 053001 (2012) (QMC with standard exchange-correlation functionals, predict high-spin ground states, comparison with DFT) - T. R. Umbach, M. Bernien, C. F. Hermanns, A. Krüger, V. Sessi, I.
Fernandez-Torrente, P. Stoll, J. I. Pascual, K. J. Franke, and W. Kuch,
*Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)*, arXiv:1212.3434 (ferromagnetic coupling on the order of 80 µeV) - A. Chiesa1, S. Carretta, P. Santini, G. Amoretti, and E. Pavarini,
*Many-Body Models for Molecular Nanomagnets*, Phys. Rev. Lett.**110**, 157204 (2013) (how to obtain onsite energies and two-electron interactions in a generalized Hubbard model from DFT; then transform to spin-only model by Schrieffer-Wolff transformation)**P** - M. Callsen, V. Caciuc, N. Kiselev, N. Atodiresei, and S. Blügel,
*Magnetic Hardening Induced by Nonmagnetic Organic Molecules*, Phys. Rev. Lett.**111**, 106805 (2013) (DFT, nonmagnetic molecule with two stacked aromatic rings on one monolayer of Fe on W(110), molecules develops local moment, Fe-Fe exchange becomes much stronger beneath molecule); see also Physics 6, 96 (2013) - C. F. Hermanns, M. Bernien, A. Krüger, C. Schmidt, S. T.
Waßerroth, G. Ahmadi, B. W. Heinrich, M. Schneider, P. W. Brouwer,
K. J. Franke, E. Weschke, and W. Kuch,
*Magnetic Coupling of Gd3N@C80 Endohedral Fullerenes to a Substrate*, Phys. Rev. Lett.**111**, 167203 (2013) (XMCD, the three Gd spins align ferromagnetically, the resulting large spin couples either moderately strongly antiferromagnetically or strongly ferromagnetically to the substrate, depending on the geometry) - C. F. Hermanns, K. Tarafder, M. Bernien, A. Krüger, Y.-M. Chang,
P. M. Oppeneer, and W. Kuch,
*Magnetic coupling of porphyrin molecules through graphene*, arXiv:1304.4755 (cobalt moment in Co-octaethylporphyrin is coupled to magnetization of nickel substrate through graphene layer) - A. Hurley, N. Baadji, and S. Sanvito,
*Detection of the electrostatic spin crossover effect in magnetic molecules*, arXiv:1304.4822 (changing the sign of the exchange interaction between two local moments by the external electric field due to an STM tip) - Y . Liu and A. Garg,
*Low-Temperature Phonoemissive Tunneling Rates in Single Molecule Magnets*, arXiv:1307.6600 - J. H. Atkinson, R. Inglis, E. del Barco, and E. K. Brechin,
*Three-Leaf Quantum Interference Clovers in a Trigonal Single-Molecule Magnet*, Phys. Rev. Lett.**113**, 087201 (2014) (seen in the spin-tunneling rate vs. orientation of the applied magnetic field) - M. Gruber
*et al.*,*Exchange bias and room-temperature magnetic order in molecular layers*, Nature Mat. (2015), doi:10.1038/nmat4361 (thin MnPc layer on Co)

For transport through magnetic systems see also Mesoscopic and nanoscopic transport

- M. R. Oliver, J. O. Dimmock, A. L. McWhorter, and T. B. Reed,
*Conductivity Studies in Europium Oxide*, Phys. Rev. B**5**, 1078 (1972) (including Eu-rich EuO) - P. C. E. Stamp,
*Spin fluctuation theory in condensed quantum systems*, J. Phys. F: Met. Phys.**15**, 1829 (1985) (very interesting remarks, e.g., on difference between Stoner and Hubbard model) - M. Bartkowiak and K. A. Chao,
*Magnetic susceptibility of the strongly correlated Hubbard model*, Phys. Rev. B**46**, 9228 (1992) (application of Hubbard operators) - N. E. Bonesteel,
*Theory of anisotropic superexchange in insulating cuprates*, Phys. Rev. B**47**, 11302 (1993) (Dzyaloshinkski-Moriya interaction) - I. V. Lerner,
*Dependence of the Ruderman-Kittel-Kasuya-Yosida interaction on nonmagnetic disorder*, Phys. Rev. B**48**, 9462 (1993) - A. Gelfert and W. Nolting,
*Absence of a Magnetic Phase Transition in Heisenberg, Hubbard, and Kondo-lattice (s-f) Films*, cond-mat/9910492, phys. stat. sol. (b)**217**, 805 (2000) (generalization of the Mermin-Wagner theorem, contains review of previous work) - V. Yu. Irkhin and M. I. Katsnelson,
*Electron spectrum, thermodynamics, and transport in antiferromagnetic metals at low temperatures*, Phys. Rev. B**62**, 5647 (2000) - R. P. Cowburn and M. E. Welland,
*Room Temperature Magnetic Quantum Cellular Automata*, Science**287**, 1466 (2000) (experiment, using single-domain magnetic nanodots) - I. Ya. Korenblit,
*Charge and spin modulation in ferromagnetic semimetals*, Phys. Rev. B**64**, 100405(R) (2001) (mean-field theory for coupled local moments and carriers, applicable to DMS, reentrant transition to stripe phase) - J. C. Angles d'Auriac, R. Melin, P. Chandra, and B. Doucot,
*Spin models on non-Euclidean hyperlattices: Griffiths phases without extrinsic disorder*, J. Phys. A: Math. Gen.**34**, 675 (2001) (e.g., hyperbolic surfaces, i.e., negative curvature, importance of nonvanishing boundary effects in the large-N limit) - J. König, M. C. Bønsager, and A. H. MacDonald,
*Dissipationless Spin Transport in Thin Film Ferromagnets*, Phys. Rev. Lett.**87**, 187202 (2001) (for an unusual form of spiral order, not a ferromagnet) - T. Senthil, S. Sachdev, and M. Vojta,
*Small and large Fermi surfaces in metals with local moments*, cond-mat/0209144 - V. Yu. Irkhin and A. V. Zarubin,
*Density-of-states picture and stability of ferromagnetism in the highly correlated Hubbard model*, Phys. Rev. B**70**, 035116 (2004) (more Hubbard operators, for a semicircular bare band) - G. Zaránd, L. Borda, J. von Delft, and N. Andrei,
*Theory of Inelastic Scattering from Magnetic Impurities*, Phys. Rev. Lett.**93**, 107204 (2004) - A. L. Kuzemsky,
*Theory of Magnetic Polaron*, cond-mat/0408404 - Y. Zhang and S. Das Sarma,
*Exchange instabilities in electron systems: Bloch versus Stoner ferromagnetism*, Phys. Rev. B**72**, 115317 (2005) (clean 2D and 3D systems) - I. Paul, C. Pépin, B. N. Narozhny, and D. L. Maslov,
*Quantum Correction to Conductivity close to Ferromagnetic Quantum Critical Point in Two Dimensions*, Phys. Rev. Lett.**95**, 017206 (2005) - V. Bach, E. H. Lieb, and M. V. Travaglia,
*Ferromagnetism of the Hubbard Model at Strong Coupling in the Hartree-Fock Approximation*, cond-mat/0506695, Rev. Math. Phys.**18**, 519 (2006) (rigorous statements about the ground state in the HF approximation) - N. Bray-Ali, J. E. Moore, T. Senthil, and A. Vishwanath,
*Ordering near the percolation threshold in models of 2D interacting bosons with quenched dilution*, cond-mat/0507587 (quantum effects vs. percolation, relevant for 2D spin models with quenched dilution) - E. Y. Vedmedenko, U. Grimm, and R. Wiesendanger,
*Interplay between magnetic and spatial order in quasicrystals*, cond-mat/0509461 - A. S. Núñez, R. A. Duine, and A. H. MacDonald,
*Antiferromagnetic Metal Spintronics*, cond-mat/0510797 - A. Kolezhuk and S. Sachdev,
*Magnon decay in gapped quantum spin systems*, cond-mat/0511353 (contains discussion of O(3) sigma model and physics beyond it) - P. Bruno,
*Berry phase, topology, and diabolicity in quantum nano-magnets*, quant-ph/0511186 (short paper containing introduction to diabolical points) - A. L. Kuzemsky,
*Statistical Theory of Spin Relaxation and Diffusion in Solids*, cond-mat/0512182, J. Low Temp. Phys.**143**, N 5/6 (2006) (long paper outlining and using the nonequilibrium statistical operator approach) - K. P. Schmidt and G. S. Uhrig,
*Hardcore Magnons in the S=1/2 Heisenberg Model on the Square Lattice*, cond-mat/0512244 (new method to treat constraints imposed by bosonization) - W. M. Witzel and S. Das Sarma,
*A quantum theory for nuclear spin dynamics induced electron spin decoherence in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid state environment*, cond-mat/0512323 - A. Singh,
*Spin waves in a band ferromagnet: spin-rotationally symmetric study with self-energy and vertex corrections*, cond-mat/0512648 (good overview over previous work, diagrammatics) - L. Chioncel, P. Mavropoulos, M. Lezaic, S. Blügel, E.
Arrigoni, M. I. Katsnelson, and A. I. Lichtenstein,
*Half-metallic ferromagnetism induced by dynamic electron correlations in VAs*, Phys. Rev. Lett.**96**, 197203 (2006) (zinc-blende VAs is not a ferromagnetic semiconductor but a half-metal due to correlations, ab-initio plus DMFT) - J. Kienert and W. Nolting,
*Magnetic phase diagram of the Kondo lattice model with quantum localized spins*, Phys. Rev. B**73**, 224405 (2006) (discussion of the phase diagram for spins from S=1/2 to classical, momentum-conserving decoupling of the Green function) - S. K. Srivastava, S. N. Mishra, and G. P. Das,
*Spin fluctuations of isolated Fe impurities in Pd-based dilute alloys: effect of ferromagnetic host spin polarization*, J. Phys.: Condens. Matter**18**, 9463 (2006) (experimental, giant moments of Fe) - R. K. Kaul, G. Zaránd, S. Chandrasekharan, D. Ullmo, and H. U.
Baranger,
*Spectroscopy of the Kondo Problem in a Box*, Phys. Rev. Lett.**96**, 176802 (2006) (Kondo physics for a spin coupled to electrons in a finite but large dot) - A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis,
*Nonequilibrium Quantum Criticality in Open Electronic Systems*, Phys. Rev. Lett.**97**, 236808 (2006) (theory of quantum critical points in interacting electron system coupled to two leads with voltage bias, specifically ferromagnetic metallic layer driven out of equilibrium by a current in an N/F/N structure, use the Keldysh formalism) - Y. Y. Wang and M. W. Wu,
*Control of spin coherence in semiconductor double quantum dots*, cond-mat/0601028 (scheme to change the spin relaxation rate over 12 orders of magnitude) - P. J. Jensen, K. H. Bennemann, D. K. Morr, and H. Dreyssé,
*Two-dimensional Heisenberg antiferromagnet in a transverse field*, cond-mat/0602033 (Green function approach) - U. K. Roessler, A. N. Bogdanov, and C. Pfleiderer,
*Spontaneous Skyrmion Ground States in Magnetic Metals*, cond-mat/0603103;*Supplementary Information for: 'Spontaneous Skyrmion Ground States in Magnetic Metals'*, cond-mat/0603104 - A. V. Syromyatnikov,
*Renormalization of the spin-wave spectrum in 3D ferromagnets with dipolar interaction*, cond-mat/0603741 - P. Larson and W. R. L. Lambrecht,
*Electronic structure of Gd pnictides*, cond-mat/0604374, Phys. Rev. B (electronic and magnetic properties of the series GdN, GdP, ..., GdBi, from LSDA+U calculations) - M. Geshi, K. Kusakabe, H. Nagara, and N. Suzuki,
*New Ferromagnetic Nitrides CaN and SrN and their recipe*, cond-mat/0604484 (DFT prediction of half-metallic ferromagnets) - G. Metalidis and P. Bruno,
*Study of the topological Hall effect on simple models*, cond-mat/0604545 (for 2DEG, the mechanism involves Berry phases in real space and does not rely on spin-orbit coupling) - I. Paul, C. Pepin, and M. R. Norman,
*Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice*, cond-mat/0605152 - X. Wang, G. E. W. Bauer, B. J. van Wees, A. Brataas, and Y. Tserkovnyak,
*Voltage generation by ferromagnetic resonance*, cond-mat/0608022 - I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H.-J. Lin,
C. T. Chen, R. Liang, and G. A. Sawatzky,
*Nitrogen based magnetic semiconductors*, cond-mat/0608313 (proposal: replacement of oxygen by nitrogen in oxides introduces strongly coupled magnetic moments) - A. Paramekanti and J. B. Marston,
*SU(N) quantum spin models: A variational wavefunction study*, cond-mat/0608691 - U. Krey,
*On the dynamics of spin systems in the Landau-Lifshitz theory*, cond-mat/0610122 - A. Tanaka and H. Tasaki,
*Metallic ferromagnetism in the Hubbard model: A rigorous example*, cond-mat/0611318 (itinerant ferromagnetism in a Hubbard model of arbitrary dimension) - K. H. Hoglund, A. W. Sandvik, and S. Sachdev,
*Impurity induced spin texture in quantum critical 2D antiferromagnets*, cond-mat/0611418 - Y. J. Uemura
*et al.*,*Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets: MnSi and (Sr*, cond-mat/0612437 (muSR experiments)_{1-x}Ca_{x})RuO_{3} - S. Schwieger, J. Kienert, K. Lenz, J. Lindner, K. Baberschke, and
W. Nolting,
*Spin wave excitations: The main source of the temperature dependence of Interlayer exchange coupling in nanostructures*, cond-mat/0612568 (theory and experiment) - S. Saremi,
*RKKY in half-filled bipartite lattices: Graphene as an example*, Phys. Rev. B**76**, 184430 (2007) (proof that the RKKY interaction on such lattices is antiferromagnetic between spins on different sublattices and ferromagnetic on the same sublattice, also approximate results for honeycomb lattice) - S. Ryu, O. I. Motrunich, J. Alicea, and M. P. A. Fisher,
*Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice*, cond-mat/0701020 (with easy-plane anisotropy) - J. Kienert and W. Nolting,
*Curie temperature of Kondo lattice films with finite itinerant charge carrier density*, cond-mat/0701389 (RKKY to double exchange crossover) - W. A. Harrison,
*Heisenberg exchange in magnetic monoxides*, cond-mat/0701423, Phys. Rev. B (discusses microscopic exchange mechanism in FeO etc., strong direct exchange, compared to superexchange) - K. H. Hoglund and A. W. Sandvik,
*Anomalous Curie response of impurities in quantum-critical spin-1/2 Heisenberg antiferromagnets*, cond-mat/0701472 - S. Burdin and P. Fulde,
*Random Kondo Alloys*, cond-mat/0701598 (CPA-type approach)**P** - L. Zeng, E. Helgren, F. Hellman, R. Islam, D. J. Smith, and J. W. Ager
III,
*Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon*, cond-mat/0701675 - Yu. V. Pershin and M. Di Ventra,
*Spin blockade at semiconductor/ferromagnet junctions*, cond-mat/0701678 - I. Fischer, N. Shah, and A. Rosch,
*Blue Phases in Chiral Ferromagnets*, cond-mat/0702287 - M. Ferrero, L. De Leo, P. Lecheminant, and M. Fabrizio,
*Strong Correlations in a nutshell*, cond-mat/0702629, Rev. Mod. Phys. (NRG for two to four Anderson impurities, discussion of results from conformal field theory and DMFT) - S. Nishimoto and P. Fulde,
*Magnetic impurity in correlated electrons system*, cond-mat/0703074 (1D Hubbard model treated with DMRG)**P** - S. Henning, F. Koermann, J. Kienert, S. Schwieger, and W. Nolting,
*Green function theory versus Quantum Monte Carlo calculations for thin magnetic films*, arXiv:0704.1552 (ferromagnetic model with easy-plane anisotropy and magnetic field along the hard axis) - A. Khitun, D. E. Nikonov, M. Bao, K. Galatsis, and K. L. Wang,
*Feasibility Study of Logic Circuits with Spin Wave Bus*, arXiv:0704.2862 - L. Brey, H. A. Fertig, and S. Das Sarma,
*Diluted Graphene Antiferromagnet*, arXiv:0705.1229 (RKKY interaction in graphene is predominantly ferromagnetic (antiferromagnetic) on the same (different) sublattices) - E. Nielsen and R. N. Bhatt,
*Nanoscale ferromagnetism in non-magnetic doped semiconductors*, arXiv:0705.2038 (for slightly*more*than one electron per dopant, essentially due to weaker binding of second electron by dopant, uses exact diagonalization)**P** - A. Khitun, M. Bao, J.-Y. Lee, K. L. Wang, D. W. Lee, S. Wang, and I.
V. Roshchin,
*Inductively Coupled Circuits with Spin Wave Bus for Information Processing*, arXiv:0705.3864 - S. Sakai, R. Arita, and H. Aoki,
*Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical mean-field study*, arXiv:0706.3109 (also uses QMC, compares various lattice structures) - M. Arnold and J. Kroha,
*Simultaneous ferromagnetic metal-semiconductor transition in electron-doped EuO*, arXiv:0708.0416 - C. Castelnovo, R. Moessner, and S. L. Sondhi,
*Magnetic Monopoles in Spin Ice*, arXiv:0710.5515 (prediction of monopoles as emergent quasiparticles) - A. Morello,
*Quantum nanomagnets and nuclear spins: an overview*, arXiv:0712.0638, Les Houches summer school 2006 (Quantum Magnetism) (tunneling of "large" moment through anisotropy barrier assisted by nuclear spins) - M. Carubelli, O. V. Billoni, S. Pighin, S. A. Cannas, D. A. Stariolo, and
F. A. Tamarit,
*The Spin Reorientation Transition and Phase Diagram of Ultrathin Ferromagnetic Films*, arXiv:0712.2426 (2D Heisenberg model with anisotropy and dipolar interactions, Monte Carlo simulations) - G.-W. Chern, R. Moessner, and O. Tchernyshyov,
*Partial order from disorder in a classical pyrochlore antiferromagnet*, arXiv:0803.2332 - D. V. Efremov, J. J. Betouras, and A. V. Chubukov,
*Non-analytic behavior of 2D itinerant ferromagnets*, arXiv:0804.2736 (non-analyticities destroy the second-order QCP) - A. Mitra and A. J. Millis,
*Current driven quantum criticality in itinerant electron ferromagnets*, arXiv:0804.3980 (also compare previous paper)**P** - A. Kalz, A. Honecker, S. Fuchs, and T. Pruschke,
*Phase diagram of the Ising square lattice with competing interactions*, arXiv:0805.0983 (Monte Carlo simulations) - M. Vojta,
*From itinerant to local-moment antiferromagnetism in Kondo lattices: Adiabatic continuity vs. quantum phase transitions*, arXiv:0805.4272 - S. Altieri, M. Finazzi, H. H. Hsieh, M. W. Haverkort, H.-J. Lin, C. T.
Chen, S. Frabboni, G. C. Gazzadi, A. Rota, S. Valeri, and L. H. Tjeng,
*Image charge screening: a new approach to enhance magnetic ordering temperatures*, arXiv:0806.1710 (thin antiferromagnetic NiO and MgO films on silver show much higher Neel temperatures than on an insulating substrate) - K. V. Kavokin,
*The puzzle of magnetic resonance effect on the magnetic compass of migratory birds*, arXiv:0808.2401 - C. Xu and S. Sachdev,
*Global phase diagrams of frustrated quantum antiferromagnets in two dimensions: doubled Chern-Simons theory*, arXiv:0811.1220 - D. Chassé and A.-M. S. Tremblay,
*Spin-Josephson effect in antiferromagnetic tunnel junctions*, arXiv:0811.2999 - N. Sandschneider and W. Nolting,
*Microscopic model for current-induced switching of magnetization for half-metallic leads*, Phys. Rev. B**79**, 184423 (2009) (Hubbard model for the active layer, non-equilibrium spectral density approach) - D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo,
R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K.
Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry,
*Dirac Strings and Magnetic Monopoles in Spin Ice Dy*, Science DOI: 10.1126/science.1178868; T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, S. T. Bramwell,_{2}Ti_{2}O_{7}*Magnetic Coulomb Phase in the Spin Ice Ho*, Science DOI: 10.1126/science.1177582_{2}Ti_{2}O_{7} - S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and
T. Fennell,
*Measurement of the charge and current of magnetic monopoles in spin ice*, Nature**461**, 956 (2009) - J. Cervenka, M. I. Katsnelson, and C. F. J. Flipse,
*Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects*, Nature Physics (2009), DOI: 10.1038/nphys1399 (note similarity of d^{0}magnetism in semiconductors) - A. V. Chubukov and D. L. Maslov,
*Spin Conservation and Fermi Liquid near a Ferromagnetic Quantum Critical Point*, Phys. Rev. Lett.**103**, 216401 (2009) (show that the low-energy physics of an itinerant system close to a ferromagnetic QCP is not described by a spin-fermion model, also show that the system has a*p*-wave spin-nematic instability) - D. Peters, I. P. McCulloch, and W. Selke,
*Spin-1 Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies*, arXiv:0901.2081 - S. Henning and W. Nolting,
*The ground state magnetic phase diagram of the ferromagnetic Kondo-lattice model*, arXiv:0901.2855 (cubic lattices in 1D, 2D, and 3D with spins 3/2, considering only bipartite orderings, essentially exact phase diagrams as function of band filling and exchange interaction with the local spins) - M. Kastner and M. Pleimling,
*Microcanonical phase diagrams of short-range ferromagnets*, arXiv:0903.2341 (phase diagrams in energy-magnetization space) - M. Greiter and R. Thomale,
*Non-Abelian Statistics in a Quantum Antiferromagnet*, arXiv:0903.4547 (2D*S*=1 antiferromagnet, the spinon and holon excitation show non-abelian statistics) - A. Sundaresan and C. N. R. Rao,
*Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles*, arXiv:0905.0183 - T. R. S. Prasanna,
*Role of thermal vibrations in phase transitions*, arXiv:0908.1873 (it is found that vibrations are generally important in magnetic phase transitions) - J. Sanchez-Barriga, J. Fink, V. Boni, I. Di Marco, J. Braun, J. Minar,
A. Varykhalov, O. Rader, V. Bellini, F. Manghi, H. Ebert, M. I. Katsnelson, A.
I. Lichtenstein, O. Eriksson, W. Eberhardt, and H. A. Duerr,
*About the strength of correlation effects in the electronic structure of iron*, arXiv:0910.4360 (correlation effects are stronger than predicted by current theory) - Y. Magnin, K. Akabli, H. T. Diep, and I. Harada,
*Monte Carlo Study of the Spin Transport in Magnetic Materials*, arXiv:0910.4619 (transport of charged spinfull particles with Heisenberg coupling to each other and to local spins, which also have a Heisenberg coupling; dynamics unclear since Hamiltonian does not contain a kinetic-energy term) - A. C. Swaving and R. A. Duine,
*Current-induced torques in continuous antiferromagnetic textures*, arXiv:0912.4519 - N. Sandschneider and W. Nolting,
*A microscopic model of current-induced switching of magnetization*, J. Phys.: Condens. Matter**22**, 026003 (2010) (essentially a ferromagnetic metal/non-magnetic insulator/thin ferromagnetic metal layer tunnel junction, microscopic description of thin ferromagnetic layer starting from Hubbard model) - D. Chassé and A.-M. S. Tremblay,
*Generalized dc and ac Josephson effects in antiferromagnets and in antiferromagnetic d-wave superconductors*, Phys. Rev. B**81**, 115102 (2010) (interesting generalization of the concept of Josephson effects to other broken symmetries, in particular to antiferromagnets)**P** - X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N.
Nagaosa, and Y. Tokura,
*Real-space observation of a two-dimensional skyrmion crystal*, Nature**465**, 901 (2010) (Fe_{0.5}Co_{0.5}Si) - L. K. Werake and H. Zhao ,
*Observation of second-harmonic generation induced by pure spin currents*, Nature Physics (8 August 2010) doi:10.1038/nphys1742 (in GaAs) - R. Steinigeweg and R. Schnalle,
*Projection operator approach to spin diffusion in the anisotropic Heisenberg chain at high temperatures*, Phys. Rev. E**82**, 040103(R) (2010) (TCL master equation) - T. Sugano, S. J. Blundell, T. Lancaster, F. L. Pratt, and H. Mori,
*Magnetic order in the purely organic quasi-one-dimensional ferromagnet 2-benzimidazolyl nitronyl nitroxide*, Phys. Rev. B**82**, 180401(R) (2010) - S. A. Yang, Q. Niu, D. A. Pesin, and A. H. MacDonald,
*Theory of I-V characteristics of magnetic Josephson junctions*, Phys. Rev. B**82**, 184402 (2010) (no superconducting component but analogy to superconducting Josephson effect) - S. Kumar and J. van den Brink,
*Frustration-Induced Insulating Chiral Spin State in Itinerant Triangular-Lattice Magnets*, Phys. Rev. Lett.**105**, 216405 (2010) - A. Sharma and W. Nolting,
*Additional carrier-mediated ferromagnetism in GdN*, arXiv:1002.1426 (modified RKKY for realistic band structure) - D. Belitz and T. R. Kirkpatrick,
*Quantum Electrodynamics and the Origins of the Exchange, Dipole-Dipole, and Dzyaloshinsky-Moriya Interactions in Itinerant Fermion Systems*, arXiv:1002.2008 - J. Wu and M. Berciu,
*Heat transport in quantum spin chains: the relevance of integrability*, arXiv:1003.1559 - V. Yu. Irkhin and A. V. Zarubin,
*Ferromagnetism in the Highly-Correlated Hubbard Model*, arXiv:1005.4795 - Y. Magnin, K. Akabli, and H. T. Diep,
*Spin Resistivity in Frustrated Antiferromagnets*, arXiv:1006.1081 - S. J. Yamamoto and Q. Si,
*Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators*, arXiv:1006.4868 - A. Sen, K. Damle, and R. Moessner,
*Fractional spin textures in the frustrated magnet SrCr*, arXiv:1007.4507_{9p}Ga_{12-9p}O_{19} - N. Karchev,
*Ferromagnetic phases in spin-Fermion systems*, arXiv:1008.1148 (extended Kondo-lattice model, two ferromagnetic phases with and without magnetization of the itinerant electrons) - H. Essen,
*Classical diamagnetism*, arXiv:1008.1182 (a way around the Bohr-van Leeuwen theorem) - M. O. Lavrentovich and R. K. P. Zia,
*Energy flux near the junction of two Ising chains at different temperatures*, arXiv:1008.5099 (Ising chains, all sites i = 0,1,... coupled to one heat bath, all i = -1,-2,... to another) - J.-J. Zhu, D.-X. Yao, S.-C. Zhang, and K. Chang,
*Electrically controllable surface magnetism on the surface of topological insulator*, arXiv:1010.4134 (calculate RKKY interaction between two impurity spins, also taking into account the possible gapping of the Dirac dispersion by the presence of the impurity spins)**P** - S. Gupta and D. Mukamel,
*Quasistationarity in a model of classical spins with long-range interactions*, arXiv:1011.0738 (explore situations for which the life time of such that scales algebraically with system size) - C. Tomaras and S. Kehrein,
*Scaling approach for the time-dependent Kondo model*, arXiv:1011.1281 (a*ferromagnetic*exchange interaction is monotonically switched on) - Y. Iqbal, F. Becca, and D. Poilblanc,
*Valence-bond crystal in the extended Kagomé spin-1/2 quantum Heisenberg antiferromagnet: A variational Monte Carlo approach*, arXiv:1011.3954 (*J*_{1}-*J*_{2}model) - F.-J. Jiang and U.-J. Wiese,
*Very High Precision Determination of Low-Energy Parameters: The 2-d Heisenberg Quantum Antiferromagnet as a Test Case*, arXiv:1011.6205 - A. E. Feiguin and G. A. Fiete,
*Spin-Incoherent Behavior in the Ground State of Strongly Correlated Systems*, Phys. Rev. Lett.**106**, 146401 (2011) (1D Kondo-*t*-*J*model: local spins coupled to*t*-*J*chain, the surprise is that this is seen for the ground state) - P. M. Sarte, H. J. Silverstein, B. T. K. Van Wyk, J. S. Gardner, Y. Qiu,
H. D. Zhou, and C. R. Wiebe,
*Absence of long-range magnetic ordering in the pyrochlore compound Er2Sn2O7*, J. Phys.: Condens. Matter**23**, 382201 (2011) - Z. Wang, Y. Sun, M. Wu, V. Tiberkevich, and A. Slavin,
*Control of Spin Waves in a Thin Film Ferromagnetic Insulator through Interfacial Spin Scattering*, Phys. Rev. Lett.**107**, 146602 (2011) - K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents,
*Quantum Excitations in Quantum Spin Ice*, Phys. Rev. X**1**, 021002 (2011) (experiment, emergent electrodynamics), see also Viewpoint - J. Inoue,
*Analytical expression for the spin-transfer torque in a magnetic junction with a ferromagnetic insulator*, Phys. Rev. B**84**, 180402(R) (2011) (ferromagnetic metal/non-magnetic metal or insulator/ferromagnetic insulator/non-magnetic metal stack) - M. Fähnle and C. Illg,
*Electron theory of fast and ultrafast dissipative magnetization dynamics*, J. Phys.: Condens. Matter**23**, 493201 (2011) - S. Powell,
*Higgs transitions of spin ice*, Phys. Rev. B**84**, 094437 (2015) (long paper) - T. S. Nunner and F. von Oppen,
*Quasilinear spin voltage profiles in spin thermoelectrics*, arXiv:1101.3277 (semiclassical transport theory) - B. Kamble and A. Singh,
*An effective quantum parameter for strongly correlated metallic ferromagnets*, arXiv:1102.2115 (multi-orbital model) - F. Maca, J. Masek, O. Stelmakhovych, X. Marti, K. Uhlirova, P. Beran,
H. Reichlova, P. Wadley, V. Novak, and T. Jungwirth,
*CuMn-V compounds: a transition from semimetal low-temperature to semiconductor high-temperature antiferromagnets*, arXiv:1102.5373 (theory and experiment for non-diluted magnetic semiconductors and semimetals, in particular CuMnAs and CuMnP, also contains short review of related compounds) - J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa,
*Dynamics of Skyrmion Crystals in Metallic Thin Films*, arXiv:1102.5384 - I. Franke, P. J. Baker, S. J. Blundell, T. Lancaster, W. Hayes, F. L.
Pratt, and G. Cao,
*Measurement of the internal magnetic field in the correlated iridates Ca4IrO6, Ca5Ir3O12, Sr3Ir2O7 and Sr2IrO4*, arXiv:1103.1036 - M. J. Lawler,
*Emergent gauge dynamics of highly frustrated magnets*, arXiv:1104.0721 - A. Mitra and A. J. Millis,
*Current driven defect unbinding transition in an XY ferromagnet*, arXiv:1104.1345 - Y. Singh, S. Manni, and P. Gegenwart,
*Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A_2IrO_3*, arXiv:1106.0429 - A. J. Willans, J. T. Chalker, and R. Moessner,
*Site dilution in Kitaev's honeycomb model*, arXiv:1106.0732 - M. Arlego and W. Brenig,
*Series Expansion Analysis of a Frustrated Four-Spin-Tube*, arXiv:1106.2101 - S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta,
*All Spin Logic device with inbuilt Non-Reciprocity*, arXiv:1106.2789 (how to ensure directional flow of information) - E. M. Epshtein, Yu. V. Gulyaev, and P. E. Zilberman,
*Current effect on magnetization oscillations in a ferromagnet-antiferromagnet junction*, arXiv:1106.3519 - R. F. Sobreiro and V. J. Vasquez Otoya,
*The role of gauge symmetry in spintronics*, arXiv:1107.0332 (field-theoretical approach applied to non-conserved spin currents) - T. Adams, S. Mühlbauer, C. Pfleiderer, F. Jonietz, A. Bauer, A.
Neubauer, R. Georgii, P. Böni, U. Keiderling, K. Everschor, M. Garst,
and A. Rosch,
*Long-range crystalline nature of the skyrmion lattice in MnSi*, arXiv:1107.0993 (neutron scattering) - D. Loss, F. L. Pedrocchi, and A. J. Leggett,
*Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions*, arXiv:1107.1223 (very general proof, includes the RKKY interaction in 2D [and 1D, solved earlier] as well as interaction via Anderson localized or interacting electrons; spin-orbit coupling generically invalidates the proof)**P** - O. E. Peil, A. Georges, and F. Lechermann,
*Strong correlations enhanced by charge-ordering in highly doped cobaltates*, arXiv:1107.4374 - C. Castelnovo, R. Moessner, and S. Sondhi,
*Debye-Hückel theory for spin ice at low temperature*, arXiv:1107.5482 - S. Bhattacharjee, S.-S. Lee, and Y. B. Kim,
*Spin-Orbital Locking, Emergent Pseudo-Spin, and Magnetic order in Na2IrO3*, arXiv:1108.1806 - A. Hamann, D. Lamago, T. Wolf, H. von Lohneysen, and D. Reznik,
*Magnetic Blue Phase in the Chiral Itinerant Magnet MnSi*, arXiv:1108.2923 - G.-W. Chern and C. D. Batista,
*Spin superstructure and noncoplanar ordering in metallic pyrochlore magnets with degenerate orbitals*, arXiv:1108.3066 - T. Qin, Q. Niu, and J. Shi,
*Energy Magnetization and Thermal Hall Effect*, arXiv:1108.3879 (linear response) - A. Honecker, D. C. Cabra, H.-U. Everts, P. Pujol, and F. Stauffer,
*Order by disorder and phase transitions in a highly frustrated spin model on the triangular lattice*, arXiv:1108.5268 - P. Stasiak, P. A. McClarty, and M. J. P. Gingras,
*Order-by-Disorder in the XY Pyrochlore Antiferromagnet Revisited*, arXiv:1108.6053 - A. Isidori, A. Ruppel, A. Kreisel, P. Kopietz, A. Mai, and R. M. Noack,
*Quantum criticality of dipolar spin chains*, arXiv:1108.6064 (1D quantum Heisenberg model with nearest-neighbor exhange and longrange dipolar interactions, in a transverse field, also derive magnon dispersion) - L. Seabra, T. Momoi, P. Sindzingre, and N. Shannon,
*Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in applied magnetic field*, arXiv:1109.2211 (Monte Carlo simulations) - S. Iguchi, Y. Kumano, K. Ueda, S. Kumakura, and Y. Tokura,
*Impact of geometrical frustration on charge transport near the Mott transition in pyrochlore (Y*, arXiv:1109.3744 (experimental, interplay of strong electronic correlations with geometrical frustration)_{1-x}Cd_{x})_{2}Mo_{2}O_{7} - J. Romhanyi, F. Pollmann, and K. Penc,
*Supersolid phase and magnetization plateaus observed in anisotropic spin-3/2 Heisenberg model on bipartite lattices*, arXiv:1109.4078 - O. Petrova and O. Tchernyshyov,
*Spin waves in a skyrmion crystal*, arXiv:1109.4990 (3D MnSi-type systems) - S. K. Baek, H. Mäkelä, P. Minnhagen, and B. J. Kim,
*Ising model on a hyperbolic plane with a boundary*, arXiv:1109.6227 - L. Savary and L. Balents,
*Coulombic Quantum Liquids in Spin-1/2 Pyrochlores*, arXiv:1110.2185 (develop a novel gauge mean-field theory) - V. A. Zyuzin and G. A. Fiete,
*Spatially anisotropic kagome antiferromagnet with Dzyaloshinskii-Moriya interaction*, arXiv:1110.6229 - H. Lee, J. Kim, E. R. Mucciolo, G. Bouzerar, and S. Kettemann,
*RKKY Interaction in Disordered Graphene*, arXiv:1110.6272 - K. A. van Hoogdalem and D. Loss,
*Frequency dependent transport through a spin chain*, arXiv:1111.4803 (propose a "spin capacitor") - M. Mochizuki,
*Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals*, arXiv:1111.5667, Phys. Rev. Lett. (LLG equations are integrated numerically for driving linearly polarized ac magnetic field, three modes are analyzed in detail)**P** - G. Li, P. Höpfner, J. Schäfer, C. Blumenstein, S. Meyer, A.
Bostwick, E. Rotenberg, R. Claessen, and W. Hanke,
*Magnetic-Order Induced Spectral-Weight Redistribution in a Triangular Surface System*, arXiv:1112.5062 (ARPES and theory for Sn on reconstructed Si(111) surface) - N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde,
*Quantum Ice: A Quantum Monte Carlo Study*, Phys. Rev. Lett.**108**, 067204 (2012) (employ QMC to find ground state of spin ice models, ground state is described by a 3+1 dimensional QED) - A. Biltmo and P. Henelius,
*Unreachable glass transition in dilute dipolar magnet*, Nature Commun.**3**, 857 (2012) (extreme slowing down due to rare ordered clusters, Griffiths phase) - R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O.
Stupakov, M. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen,
*d*, Phys. Rev. Lett.^{0}Ferromagnetic Interface between Nonmagnetic Perovskites**109**, 127207 (2012) - E. C. Andrade and M. Vojta,
*Disorder, Cluster Spin Glass, and Hourglass Spectra in Striped Magnetic Insulators*, Phys. Rev. Lett.**109**, 147201 (2012) - C. C. Price and N. B. Perkins,
*Critical Properties of the Kitaev-Heisenberg Model*, Phys. Rev. Lett.**109**, 187201 (2012) (applied to iridates) - L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y. Yasui, K.
Kakurai, and M. R. Lees,
*Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7*, Nature Commun.**3**, 992 (2012) (neutron scattering; a first-order transition between a spin-ice phase and a ferromagnetic phase is explained in terms of a Higgs mechanism; based on theoretical work by S. Powell)**P** - H. M. Revell, L. R. Yaraskavitch, J. D. Mason, K. A. Ross, H. M. L.
Noad, H. A. Dabkowska, B. D. Gaulin, P. Henelius, and J. B. Kycia,
*Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice*, Nature Physics (2012), doi:10.1038/nphys2466 (experiment and Monte Carlo simulations) - T.-H. Han
*et al.*,*Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet*, Nature**492**, 406 (2012) (neutron scattering, herbertsmithite) - L. D. C. Jaubert, S. Piatecki, M. Haque, and R. Moessner,
*Itinerant electrons in the Coulomb phase*, arXiv:1201.0677 (study the interplay between frustration and itineracy, two and three dimensions, electrons are assumed to move only along loops of parallel Ising spins) - S. M. Disseler, Chetan Dhital, T. C. Hogan, A. Amato, S. Giblin,
Clarina de la Cruz, S. D. Wilson, and M. J. Graf,
*Magnetic frustration and the onset of magnetic order in the pyrochlore iridate Nd2Ir2O7*, arXiv:1201.4606 - T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C.
Pfleiderer, K. Everschor, M. Garst, and A. Rosch,
*Emergent electrodynamics of skyrmions in a chiral magnet*, arXiv:1202.1176 (MnSi, theory and Hall measurements) - P. Quémerais, P. McClarty, and R. Moessner,
*Possible Quantum Diffusion of Polaronic Muons in Dy*, arXiv:1203.3039_{2}Ti_{2}O_{7}Spin Ice - T. R. Kirkpatrick and D. Belitz,
*Universal low-temperature tricritical point in metallic ferromagnets and ferrimagnets*, arXiv:1203.3826 (universal: also if magnetic moments and mobile electrons are from different bands, Heisenberg/XY/Ising symmetry, ferro- and ferrimagnets) - S. Pielawa, E. Berg, and S. Sachdev,
*Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: from a quantum liquid to antiferromagnetic order*, arXiv:1203.6653 - V. Khemani, R. Moessner, S. A. Parameswaran, and S. L. Sondhi,
*A Bionic Coulomb Phase on the Pyrochlore Lattice*, arXiv:1204.3646 (four-state Potts model on pyrochlore lattice, three emergent gauge fields) - A. Gendiar, R. Krcmar, S. Andergassen, M. Daniska, and T. Nishino,
*Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices*, arXiv:1205.3850 (triangular lattices with*q*triangles meeting at each node on negatively curved surfaces; find mean-field universality class for all*q*> 6) - A. Wollny, E. C. Andrade, and M. Vojta,
*Singular field response and singular screening of vacancies in antiferromagnets*, arXiv:1206.2927 - B. Mera, V. R. Vieira, and V. K. Dugaev,
*Dynamics of magnetic moments coupled to electrons and lattice oscillations*, arXiv:1206.7092 (in 3d ferromagnets) - Z. Xiong and X.-G. Wen,
*General method for finding families of exact ground states of broad classes of classical Heisenberg models*, arXiv:1208.1512 (very general proof for lattices with one spin per unit cell, also for several spins per unit cell under certain conditions) - A. Schwabe, D. Gütersloh, and M. Potthoff,
*The Kondo-versus-RKKY quantum box*, arXiv:1208.2209 (1D chain, non-interacting electrons, Zener coupling to local spins at finite number of sites) - J. H. H. Perk,
*Erroneous solution of three-dimensional (3D) simple orthorhombic Ising lattices*, arXiv:1209.0731 (criticizes work by Z. Zhang and N. H. March) - Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X.
F. Jin, F. Kagawa, and Y. Tokura,
*Robust formation of skyrmions and topological Hall effect in epitaxial thin films of MnSi*, arXiv:1209.4480 (differences compared to bulk MnSi) - M. F. Lapa and C. L. Henley,
*Ground States of the Classical Antiferromagnet on the Pyrochlore Lattice*, arXiv:1210.6810 (Heisenberg model with nearest and next-nearest neighbor interaction) - W. Brenig and A. L. Chernyshev,
*Highly Dispersive Scattering From Defects In Non-Collinear Magnets*, arXiv:1212.2972 - G.-W. Chern, A. Rahmani, I. Martin, and C. D. Batista,
*Quantum Hall ice*, arXiv:1212.3617 - S. Boseggia, R. Springell, H. C. Walker, C. Rüegg, H. Okabe, M.
Isobe, R. S. Perry, S. P. Collins, and D. F. McMorrow,
*Robustness of basal-plane antiferromagnetic order and the J*, arXiv:1212.5912 (Ba2IrO4)_{eff}=1/2 state in single-layer iridate spin-orbit Mott insulators - G.-W. Chern and R. Moessner,
*Dipolar Order by Disorder in the Classical Heisenberg Antiferromagnet on the Kagome Lattice*, Phys. Rev. Lett.**110**, 077201 (2013) (Monte Carlo simulations at low temperatures) - J.-Y. Fortin,
*Random site dilution properties of frustrated magnets on a hierarchical lattice*, J. Phys.: Condens. Matter**25**, 296004 (2013) - S. B. Lee, A. Paramekanti, and Y. B. Kim,
*RKKY Interactions and the Anomalous Hall Effect in Metallic Rare-Earth Pyrochlores*, Phys. Rev. Lett.**111**, 196601 (2013) (relevant for the iridate Pr_{2}Ir_{2}O_{7}, RKKY interaction between Pr local moments caculated from one-band model, can lead to complex dipolar/quadrupolar order, which in turns causes Weyl-type reconstruction of the electronic Ir 5d band structure) - R. Flint and P. A. Lee,
*Emergent Honeycomb Lattice in LiZn2Mo3O8*, Phys. Rev. Lett.**111**, 217201 (2013) - R. Flint and T. Senthil,
*Chiral RKKY interaction in Pr2Ir2O7*, arXiv:1301.0815 (chiral RKKY interaction between Pr moments, due to chiral fluctuations of [itinerant] Ir moments) - K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi,
*Giant Magnetoresistance Effect in the Metal-Insulator Transition of Pyrochlore Oxide Nd2Ir2O7*, arXiv:1301.3969, J. Phys. Soc. Jpn.**82**, 023706 (2013) (giant magnetoresistance in the insulating state, also depends on the type of lanthanide ion) - M. Vojta,
*Excitation spectra of disordered dimer magnets near quantum criticality*, arXiv:1301.4223 (genearalized bond-operator approach) - I. Kimchi and A. Vishwanath,
*Kitaev-Heisenberg Models for Iridates on the Triangular, (Hyper) Kagome, FCC and Pyrochlore Lattices*, arXiv:1303.3290 - G.-W. Chern, S. Maiti, R. M. Fernandes, and P. Wölfle,
*Electronic Transport in the Coulomb Phase of the Pyrochlore Spin Ice*, Phys. Rev. Lett.**110**, 146602 (2013) (residual and finite-temperature resistity, results are compared to experiments on Nd2Ir2O7 and Pr2Ir2O7)**P** - I. I. Mazin, S. Manni, K. Foyevtsova, H. O. Jeschke, P. Gegenwart, and
R. Valenti,
*Origin of the insulating state in honeycomb iridates and rhodates*, arXiv:1304.2258 - T. Prosen and B. Zunkovic,
*Macroscopic Diffusive Transport in a Microscopically Integrable Hamiltonian System*, arXiv:1304.7452 - T. Kernreiter,
*RKKY interaction induced by two-dimensional hole gases*, arXiv:1305.5274 - G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong, G. Murthy,
and R. K. Kaul,
*Novel Magnetism of Ir5+(5d4) Ions in the Double Perovskite Sr2YIrO6*, Phys. Rev. Lett.**112**, 056402 (2014) (unusual magnetic order in spite of strong spin-orbit coupling and frustration) - H. Watanaebe, T. Shirakawa, and S. Yunoki,
*Theoretical study of insulating mechanism in multi-orbital Hubbard models with a large spin-orbit coupling: Is Sr2IrO4 a Slater insulator or a Mott insulator?*, arXiv:1402.0935 (variational Monte Carlo simulations; conclude that it is a Slater insulator, i.e., due to long-range magnetic order; gap closes at Néel temperature); A. Yamasaki*et al.*,*Bulk Nature of Layered Perovskite Iridates beyond the Mott Scenario: An Approach from Bulk Sensitive Photoemission Study*, arXiv:1310.7160 (experimental support for Slater picture) - C. Sürgers, G. Fischer, P. Winkel, and H. v. Löhneysen,
*Large topological Hall effect in the non-collinear phase of an antiferromagnet*, Nature Commun.**5**, 3400 (2014) (Mn_{5}Si_{3}) - C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T.
Adams, S. Blügel, A. Rosch, Y. Mokrousov, and C. Pfleiderer,
*Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn1-xFexSi*, Phys. Rev. Lett.**112**, 186601 (2014) - J.-H. Kim, A. Jain, M. Reehuis, G. Khaliullin, D. C. Peets, C. Ulrich,
J. T. Park, E. Faulhaber, A. Hoser, H. C. Walker, D. T. Adroja, A. C. Walters,
D. S. Inosov, A. Maljuk, and B. Keimer,
*Competing Exchange Interactions on the Verge of a Metal-Insulator Transition in the Two-Dimensional Spiral Magnet Sr3Fe2O7*, Phys. Rev. Lett.**113**, 147206 (2014) - F. Krüger, C. J. Pedder, and A. G. Green,
*Fluctuation-Driven Magnetic Hard-Axis Ordering in Metallic Ferromagnets*, Phys. Rev. Lett.**113**, 147001 (2014) - E. Svanidze, J. K. Wang, T. Besara, L. Liu, Q. Huang, T. Siegrist, B.
Frandsen, J. W. Lynn, A. H. Nevidomskyy, M. B. Gamza, M. C. Aronson, Y. J.
Uemura, and E. Morosan,
*Novel Itinerant Antiferromagnet TiAu*, arXiv:1409.0811 (magnetization measurements, also μSR and XPS, accompanied by DFT calculations; SDW system, apparently due to nesting of quasi-2D [*ab*-plane] Fermi-surface sheets; calculated Fermi surface is complicated, various bands intersect Fermi energy) - C. Lester
*et al.*,*Field-tunable spin-density-wave phases in Sr3Ru2O7*, Nature Mater. (2015) doi:10.1038/nmat4181 - M. Yoshida, H. Kobayashi, I. Yamauchi, M. Takigawa, S. Capponi,
D. Poilblanc, F. Mila, K. Kudo, Y. Koike, and N. Kobayashi,
*Real Space Imaging of Spin Polarons in Zn-Doped SrCu*, Phys. Rev. Lett._{2}(BO_{3})_{2}**114**, 056402 (2015) (^{11}B NMR, theoretical analysis gives local magnetization at the Cu sites) - B. Javanparast, Z. Hao, M. Enjalran, and M. J. P. Gingras,
*Fluctuation-Driven Selection at Criticality in a Frustrated Magnetic System: The Case of Multiple-*, Phys. Rev. Lett.**k**Partial Order on the Pyrochlore Lattice**114**, 130601 (2015) (orderings on the pyrochlore lattice with periodically arranged disordered, paramagnetic sides; mean-field approximation, QMC, Landau theory) - S. M. Wu, J. E. Pearson, and A. Bhattacharya,
*Paramagnetic Spin Seebeck Effect*, Phys. Rev. Lett.**114**, 186602 (2015) (temperature gradient drives spin current, experimentally distinguished from other effects by dependence on magnetic-field orientation) - S. H. Chun
*et al.*,*Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na*, Nature Phys._{2}IrO_{3}**11**, 462 (2015) (x-ray scattering experiments); see also News and Views: P. Gegenwart and S. Trebst,*Spin-orbit physics: Kitaev matter*, Nature Phys.**11**, 444 (2015) - E. Lefrancois, V. Simonet, R. Ballou, E. Lhotel, A. Hadj-Azzem, S.
Kodjikian, P. Lejay, P. Manuel, D. Khalyavin, and L. C. Chapon,
*Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates*, Phys. Rev. Lett.**114**, 247202 (2015) (magnetization and neutron scattering experiments; Tb2Ir2O7 probably has all-in-all-out magnetic order) - M. Schecter, M. S. Rudner, and K. Flensberg,
*Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect*, Phys. Rev. Lett.**114**, 247205 (2015) (nonperturbative theory) - K. Ueda, J. Fujioka, B.-J. Yang, J. Shiogai, A. Tsukazaki, S. Nakamura,
S. Awaji, N. Nagaosa, and Y. Tokura,
*Magnetic Field-Induced Insulator-Semimetal Transition in a Pyrochlore Nd2Ir2O7*, Phys. Rev. Lett.**115**, 056402 (2015) - Z. Wang, Y. Kamiya, A. H. Nevidomskyy, and C. D. Batista,
*Three-Dimensional Crystallization of Vortex Strings in Frustrated Quantum Magnets*, Phys. Rev. Lett.**115**, 107201 (2015) (theory) - I. Kézsmárki
*et al.*,*Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8*, Nature Mat. (2015), doi:10.1038/nmat4402 - G. Zhang and Z. Song,
*Topological Characterization of Extended Quantum Ising Models*, Phys. Rev. Lett.**115**, 177204 (2015) (interesting geometrical mapping) - L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T.
Qi, G. Cao, and D. Hsieh,
*Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate*, Nature Phys. (2015), doi:10.1038/nphys3517 (Sr_{2}IrO_{4}) - C. M. Varma,
*Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets*, Phys. Rev. Lett.**115**, 186405 (2015) (for example iron pnictides) - M. Powalski, G. S. Uhrig, and K. P. Schmidt,
*Roton Minimum as a Fingerprint of Magnon-Higgs Scattering in Ordered Quantum Antiferromagnets*, Phys. Rev. Lett.**115**, 207202 (2015) (continuous similarity transformation) - H. Skarsvåg, C. Holmqvist, and A. Brataas,
*Spin Superfluidity and Long-Range Transport in Thin-Film Ferromagnets*, Phys. Rev. Lett.**115**, 237201 (2015) (important result: dipole-dipole interaction prevents superfluid spin transport) - R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig,
*Heat Conductivity of the Heisenberg Spin-1/2 Ladder: From Weak to Strong Breaking of Integrability*, Phys. Rev. Lett.**116**, 017202 (2016) - H. Gretarsson, N. H. Sung, M. Höppner, B. J. Kim, B. Keimer,
and M. Le Tacon,
*Two-Magnon Raman Scattering and Pseudospin-Lattice Interactions in Sr2IrO4 and Sr3Ir2O7*, Phys. Rev. Lett.**116**, 136401 (2016) - A. Marrazzo and R. Resta,
*Irrelevance of the Boundary on the Magnetization of Metals*, Phys. Rev. Lett.**116**, 137201 (2016) - L. Balents and O. A. Starykh,
*Quantum Lifshitz Field Theory of a Frustrated Ferromagnet*, Phys. Rev. Lett.**116**, 177201 (2016) (one-dimensional frustrated systems, field theory) - S.-Z. Lin, S. Hayami, and C. D. Batista,
*Magnetic Vortex Induced by Nonmagnetic Impurity in Frustrated Magnets*, Phys. Rev. Lett.**116**, 187202 (2016) - T. Liu, G. Vignale, and M. E. Flatté,
*Nonlocal Drag of Magnons in a Ferromagnetic Bilayer*, Phys. Rev. Lett.**116**, 237202 (2016) (due to dipolar interactions, semiclassical Boltzmann theory)**P** - T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara,
*Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current*, Phys. Rev. Lett.**116**, 247201 (2016) - K. Aoyama and H. Kawamura,
*Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice*, Phys. Rev. Lett.**116**, 257201 (2016) (classical MC simulations) - Z. Wang, K. Barros, G.-W. Chern, D. L. Maslov, and C. D. Batista,
*Resistivity Minimum in Highly Frustrated Itinerant Magnets*, Phys. Rev. Lett.**117**, 206601 (2016) ([classical] spin-fermion model)**P**

For transport through magnetic systems see also Mesoscopic and nanoscopic transport

For spin liquids see also Other systems with non-trivial topology

- G. Lucovsky,
*On the photoionization of deep impurity centers in semiconductors*, Solid State Commun.**3**, 299 (1965) (uses a zero-range potential to model deep impurities) - P. W. Anderson,
*Model for the Electronic Structure of Amorphous Semiconductors*, Phys. Rev. Lett.**34**, 953 (1975) ("In ... impurity bands in covalent semiconductors, the localized electrons show Curie-law paramagnetism due to repulsive Coulomb interactions.") - B. K. Ridley,
*The photoionisation cross section of deep-level impurities in semiconductors*, J. Phys. C: Solid State Phys.**13**, 2015 (1980) - D. Olego and M. Cardona,
*Raman scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs*, Phys. Rev. B**24**, 7217 (1981) (contains review and bibliography for coupling of phonon and plasmon modes in doped sermiconductors; disorder scattering plays a big role)**P** - J. Neugebauer and C. G. Van de Walle,
*Atomic geometry and electronic structure of native defects in GaN*, Phys. Rev. B**50**, 8067 (1994) - K. Milants, J. Verheyden, T. Barancira, W. Deweerd, H. Pattyn, S.
Bukshpan, D. L. Williamson, F. Vermeiren, G. Van Tendeloo, C. Vlekken, S.
Libbrecht, and C. Van Haesendonck ,
*Size distribution and magnetic behavior of lead inclusions in silicon single crystals*, J.Appl. Phys.**81**, 2148 (1997) - N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D.
Moustakas,
*Scattering of electrons at threading dislocations in GaN*, J. Appl. Phys.**83**, 3656 (1998) (mostly theoretical); H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman,*The role of dislocation scattering in n-type GaN films*, Appl. Phys. Lett.**73**, 821 (1998) (corresponding experiment) - M. G. Burt,
*Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures*, J. Phys.: Condens. Matter**11**, R53 (1999) (contains review of author's generalization of envelope function method and addresses various misconceptions, also discusses calculation of dipole matrix elements) - W. R. L. Lambrecht,
*Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN*, Phys. Rev. B**62**, 13538 (2000) (DFT) - C. Persson, R. Ahuja, and B. Johansson,
*Full band calculation of doping-induced band-gap narrowing in p-type GaAs*, Phys. Rev. B**64**, 033201 (2001) - W. J. Moore, J. A. Freitas, Jr., S. K. Lee, S. S. Park, and J. Y. Han,
*Magneto-optical studies of free-standing hydride-vapor-phase epitaxial GaN*, Phys. Rev. B**65**, 081201(R) (2002) - M. A. Reshchikov and H. Morkoc,
*Luminescence properties of defects in GaN*, J. Appl. Phys.**97**, 061301 (2005) (long paper reviewing many experiments and relevant new ab-initio calculations, represents significant change in the view of nitrogen vacancies) - K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, and Y. Hirayama,
*Valley Polarization in (100) Silicon at Zero Magnetic Field*, cond-mat/0604118 - R. O. Kuzian, A. M. Daré, P. Sati, and R. Hayn,
*Crystal field theory of Co*, cond-mat/0604322^{2+}in ZnO revisited - J. L. Gavartin, D. Munoz Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee,
*Negative oxygen vacancies in HfO*, cond-mat/0605593_{2}as charge traps in high-k stacks - Y. Qi and M. E. Flatté,
*Current-induced spin polarization in nonmagnetic semiconductor junctions*, cond-mat/0607354 (... in the*absence*of spin-orbit coupling) - R. Hanson, O. Gywat, and D. D. Awschalom,
*Room-temperature manipulation and decoherence of a single spin in diamond*, quant-ph/0608233 (nitrogen-vacancy centers) - A. J. Zaleski, M. Nyk, and W. Strek,
*Magnetic studies of GaN nanoceramics*, cond-mat/0612389, Appl. Phys. Lett. (effects of deviation from perfect crystal on diamagnetism of GaN) - N. Manyala, J. F. DiTusa, G. Aeppli, and A. P. Ramirez,
*Doping a semiconductor to create an unconventional metal*, arXiv:0810.2544, Nature**454**, 976 (2008) (propose the realization of a non-Fermi liquid by doping a narrow-gap semiconductor) - H. Zhao, M. Mower, and G. Vignale,
*Ambipolar spin diffusion and D'yakonov-Perel' spin relaxation in GaAs quantum wells*, Phys. Rev. B**79**, 115321 (2009) - S. Das Sarma, E. H. Hwang, and Q. Li,
*Valley dependent many-body effects in 2D semiconductors*, arXiv:0904.2622 - F. Zhao, A. Balocchi, A. Kunold, J. Carrey, H. Carrère, T. Amand,
N. Ben Abdallah, J. C. Harmand, and X. Marie,
*Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors*, arXiv:0907.4321 (due to paramagnetic Ga interstitials in Ga(As,N)) - J. Schliemann,
*The dielectric function of the semiconductor hole gas*, arXiv:1003.4820 - M.-L. Zhang and D. A. Drabold,
*A new approach to computing transport coefficients: application to conductivity and Hall coefficient of hydrogenated amorphous silicon*, arXiv:1006.3800 - D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, I. S.
Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E.
Johnston-Halperin,
*Defect states and disorder in charge transport in semiconductor nanowires*, arXiv:1106.4492 - D. Futterer, M. Governale, U. Zuelicke, and J. König,
*Band-mixing-mediated Andreev reflection of semiconductor holes*, arXiv:1107.2039 (p-type semiconductor/s-wave superconductor interface, Andreev reflection involving mixing of heavy and light holes) - V. M. Acosta, C. Santori, A. Faraon, Z. Huang, K.-M. C. Fu, A. Stacey, D.
A. Simpson, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and
R. G. Beausoleil,
*Dynamic Stabilization of the Optical Resonances of Single Nitrogen-Vacancy Centers in Diamond*, Phys. Rev. Lett.**108**, 206401 (2012) - A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, and A. Ya Vul',
*Spin S = 1 centers: a universal type of paramagnetic defects in nanodiamonds of dynamic synthesis*, J. Phys.: Condens. Matter**24**, 225302 (2012) - F. Nichele, S. Chesi, S. Hennel, A. Wittmann, C. Gerl, W. Wegscheider, D.
Loss, T. Ihn, and K. Ensslin,
*Characterization of Spin-Orbit Interactions of GaAs Heavy Holes Using a Quantum Point Contact*, Phys. Rev. Lett.**113**, 046801 (2014) (find a quadratic spin-orbit coupling term, in addition to the cubic Rashba effect)

- P. A. Bobbert,
*Organic semiconductors: What makes the spin relax?*, Nature Mat.**9**, 288 (2010) - J. Aragó and A. Troisi,
*Dynamics of the Excitonic Coupling in Organic Crystals*, Phys. Rev. Lett.**114**, 026402 (2015)

- Y. V. Pershin and M. Di Ventra,
*Experimental demonstration of associative memory with memristive neural networks*, arXiv:0905.2935, Neural Networks**23**, 881 (2010) - M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams,
*A scalable neuristor built with Mott memristors*, Nature Materials (2012), doi:10.1038/nmat3510 - M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy,
*Ultra Low Energy Analog Signal Processing Using Spin Neurons Based on Nano Magnets*, arXiv:1206.2466 (spin neurons made up of several nanomagnets interacting through non-magnetic metals);*Proposal For Neuromorphic Hardware Using Spin Devices*, arXiv:1206.3227 - O. Bichler, W. Zhao, F. Alibart, S. Pleutin, S. Lenfant, D. Vuillaume, and
C. Gamrat,
*Pavlov's dog associative learning demonstrated on synaptic-like organic transistors*, arXiv:1302.3261, Neural Computation**25**, 549 (2013) (associative memory, design using FETs involving Au nanoparticles in organic matrix, experimental demonstration) - Y. V. Pershin and M. Di Ventra,
*Memcapacitive neural networks*, arXiv:1307.6921 - M. Sharad, D. Fan, and K. Roy,
*Spin Neurons: A Possible Path to Energy-Efficient Neuromorphic Computers*, arXiv:1309.3303 (macroscopic spin-torque devices) - M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev,
and D. B. Strukov,
*Training and operation of an integrated neuromorphic network based on metal-oxide memristors*, Nature**521**, 61 (2015) (CMOS, 12 by 12 crossbar) - S. Vongehr and X. Meng,
*The Missing Memristor has Not been Found*, Sci. Rep.**5**, 11657 (2015) (partially sociological discussion of disputed realization of memristor in 2008)

For nanoscopic systems see also Mesoscopic and nanoscopic transport

- K. Tsukagoshi, B. W. Alphenaar, and H. Ago,
*Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube*, Nature**401**, 572 (1999) - K. I. Bolotin, F. Kuemmeth, and D. C. Ralph,
*Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance in ferromagnetic metal break junctions*, cond-mat/0602251 - D. M. Schröer, A. K. Hüttel, K. Eberl, S. Ludwig, M. N.
Kiselev, and B. L. Altshuler,
*Magnetic control of resonant tunneling and Kondo effect in a one-electron double quantum dot*, cond-mat/0607044 - D. Rohrlich, O. Zarchin, M. Heiblum, D. Mahalu, and V. Umansky,
*Controlled Dephasing of a Quantum Dot: From Coherent to Sequential Tunneling*, cond-mat/0607495 (experiment and theory) - K. Hamaya, S. Masubuchi, M. Kawamura, T. Machida, M. Jung, K. Shibata, K.
Hirakawa, T. Taniyama, S. Ishida, and Y. Arakawa,
*Spin transport through a single self-assembled InAs quantum dot with ferromagnetic leads*, cond-mat/0611269 (study the tunnel magnetoresistance) - L. Vila, R. Giraud, L. Thevenard, A. Lemaitre, F. Pierre, J.
Dufouleur, D. Mailly, B. Barbara, and G. Faini,
*Universal Conductance Fluctuations in Epitaxial GaMnAs Ferromagnets: Dephasing by Structural and Spin Disorder*, Phys. Rev. Lett.**98**, 027204 (2007) (show a large phase coherence length, compare nanowires with anisotropic layers) - R. L. Willett, M. J. Manfra, L. N. Pfeiffer, and K. W. West,
*Mesoscopic structures and 2D hole systems in fully field effect controlled heterostructures*, cond-mat/0703719 - J. V. Holm, H. I. Jørgensen, K. Grove-Rasmussen, J. Paaske, K.
Flensberg, and P. E. Lindelof,
*Gate-dependent tunneling-induced level shifts in carbon nanotube quantum dots*, arXiv:0711.4913 (experiment and theory, observe many Coulomb diamonds, Kondo resonances, do second-order perturbation theory for level shifts) - D. Neumaier, K. Wagner, U. Wurstbauer, M. Reinwald, W. Wegscheider, and
D. Weiss,
*Phase coherent transport in (Ga,Mn)As*, arXiv:0801.3363 (small devices, universal conductance fluctuations, Aharonov-Bohm effect, weak localization) - S. Kafanov and P. Delsing,
*Measurement of the shot noise in a single electron transistor*, arXiv:0812.0282 - R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer,
C. Hierold, E. Mariani, M. G. Schultz, F. von Oppen, and
K. Ensslin,
*Franck-Condon blockade in suspended carbon nanotube quantum dots*, arXiv:0812.3826, Nature Physics (2009) (experiment and modeling) - H. I. Jørgensen, K. Grove-Rasmussen, K. Flensberg, and P. E.
Lindelof,
*Critical and excess current through an open quantum dot: Temperature and magnetic field dependence*, arXiv:0812.4175 - E. A. Chekhovich, M. N. Makhonin, J. Skiba-Szymanska, A. B. Krysa, V.
D. Kulakovskii, V. I. Fal'ko, M. S. Skolnick, and A. I. Tartakovskii,
*Polarization freezing of 10000 optically-cooled nuclear spins by coupling to a single electron*, arXiv:0901.4249, Nature Materials - C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K. W.
Baldwin, K. W. West, D. Goldhaber-Gordon, and R. de Picciotto,
*Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire*, arXiv:0911.4311 (clear signatures of spin currents induced by spin-orbit coupling in the charge conductivity) - H. A. Nilsson, O. Karlström, M. Larsson, P. Caroff, J. N. Pedersen,
L. Samuelson, A. Wacker, L.-E. Wernersson, and H. Q. Xu,
*Correlation-Induced Conductance Suppression at Level Degeneracy in a Quantum Dot*, Phys. Rev. Lett.**104**, 186804 (2010) (contains a theory part) - C. Fricke, F. Hohls, C. Flindt, and R. J. Haug,
*High cumulants in the counting statistics measured for a quantum dot*, arXiv:1003.0517 - S. Amasha, I. G. Rau, M. Grobis, R. M. Potok, H. Shtrikman, and D.
Goldhaber-Gordon,
*Coulomb Blockade in an Open Quantum Dot*, arXiv:1009.5348 - S. Kim, Y. Hashimoto, Y. Iye, and S. Katsumoto,
*Evidence of Spin-Filtering in Quantum Constrictions with Spin-Orbit Interaction*, arXiv:1102.4648 (InGaAs quantum well, also model, assumes one contact to have spin-dependent tunneling amplitude)**P** - Y. Yamauchi, K. Sekiguchi, K. Chida, T. Arakawa, S. Nakamura, K.
Kobayashi, T. Ono, T. Fujii, and R. Sakano,
*Evolution of the Kondo Effect in a Quantum Dot Probed by Shot Noise*, Phys. Rev. Lett.**106**, 176601 (2011) - A. Kumar, A. Singh, S. Samanta, K. Vasundhara, A. K. Debnath, D. K. Aswal,
S. K. Gupta, and J. V. Yakhmi,
*Charge transport in ultrathin iron-phthalocyanine thin films under high electric fields*, J. Phys.: Condens. Matter**23**, 355801 (2011) (in-plane transport) - M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch, J. J. Viennot, G.
Fève, B. Huard, C. Mora, A. Cottet, and T. Kontos,
*Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip*, Phys. Rev. Lett.**107**, 256804 (2011) (carbon-nanotube cicuit in a superconducting cavity) - C. Rössler, S. Baer, E. de Wiljes, P.-L. Ardelt, T. Ihn, K. Ensslin,
C. Reichl, and W. Wegscheider,
*Transport Properties of Clean Quantum Point Contacts*, arXiv:1106.2982 - B. Küng, C. Rössler, M. Beck, M. Marthaler, D. S. Golubev, Y.
Utsumi, T. Ihn, and K. Ensslin,
*Irreversibility on the Level of Single-Electron Tunneling*, arXiv:1107.4240 - N. C. Bishop, R. W. Young, G. A. Ten Eyck, J. R. Wend, E. S. Bielejec,
K. Eng, L. A. Tracy, M. P. Lilly, M. S. Carroll, C. Borrás Pinilla, and
H. L. Stalford,
*Triangulating tunneling resonances in a point contact*, arXiv:1107.5104 (can determine position of resonant dopand through comparison of experiment with simulations) - K. Gloos and E. Tuuli,
*Break-junction experiments on the zero-bias anomaly of non-magnetic and ferromagnetically ordered metals*, arXiv:1109.3774 - S. Fahlvik Svensson, A. I. Persson, E. A. Hoffmann, N. Nakpathomkun,
H. A. Nilsson, H. Q. Xu, L. Samuelson, and H. Linke,
*Lineshape of the thermopower of quantum dots*, arXiv:1110.0352 (experiment and theory based on Landauer formula for non-interacting electrons) - T.-M. Liu, A. N. Ngo, B. Hemingway, S. Herbert, M. Melloch, S. E. Ulloa,
and A. Kogan,
*A quantitative study of spin-flip co-tunneling transport in a quantum dot*, arXiv:1110.5924 (experiments on lateral GaAs/AlGaAs quantum dot, compared to theory using rate equations in cotunneling approximation, close agreement) - X. Zhou, B. Schmidt, L. W. Engel, G. Gervais, L. N. Pfeiffer, K. W. West,
and S. Das Sarma,
*Resistivity saturation in a weakly interacting 2D Fermi liquid at intermediate temperatures*, arXiv:1111.0011 - N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug,
*Measurement of finite-frequency current statistics in a single-electron transistor*, Nature Commun.**3**, 612 (2012) (measurement of two- and three-current correlation functions or corresponding Fano factors) - K. Shibata, A. Umeno, K. M. Cha, and K. Hirakawa,
*Photon-Assisted Tunneling through Self-Assembled InAs Quantum Dots in the Terahertz Frequency Range*, Phys. Rev. Lett.**109**, 077401 (2012) - E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber, and S.
De Franceschi,
*Zero-Bias Anomaly in a Nanowire Quantum Dot Coupled to Superconductors*, Phys. Rev. Lett.**109**, 186802 (2012) (zero-bias conductance peak emerges beyond a certain [small] magnetic field, not due to Majorana states, note that field splitting of Kondo peak is unobservable due to small field) - B. Küng, C. Rössler, M. Beck, J. Faist, T. Ihn, and K. Ensslin,
*Quantum dot occupation and electron dwell time in the cotunneling regime*, arXiv:1204.4553 - B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-S. Choi, M.-H. Bae, K. Kang, J. S.
Lim, R. López, and N. Kim,
*Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot*, Phys. Rev. Lett.**110**, 076803 (2013) - M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, and W.
Wernsdorfer,
*Supramolecular Spin Valves*, arXiv:1304.6543 (magnetic TbPc_{2}molecule side coupled to CNT quantum dot, large magnetoresistance); M. Urdampilleta, S. Klyatskaya, M. Ruben, and W. Wernsdorfer,*Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin*, arXiv:1304.6585 (use to read out the single Tb nuclear spin) - Y.-Y. Liu, K. D. Petersson, J. Stehlik, J. M. Taylor, and J. R. Petta,
*Photon Emission from a Cavity-Coupled Double Quantum Dot*, Phys. Rev. Lett.**113**, 036801 (2014) - S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T.
Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck,
and S. Tarucha,
*Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer*, Phys. Rev. Lett.**113**, 126601 (2014) (transport through quantum dot in one arm of two-path interferometer) - A. Pourkabirian, M. V. Gustafsson, G. Johansson, J. Clarke, and P.
Delsing,
*Nonequilibrium Probing of Two-Level Charge Fluctuators Using the Step Response of a Single-Electron Transistor*, Phys. Rev. Lett.**113**, 256801 (2014) - T. Arakawa
*et al.*,*Shot Noise Induced by Nonequilibrium Spin Accumulation*, Phys. Rev. Lett.**114**, 016601 (2015) - M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto,
*Rectification of electronic heat current by a hybrid thermal diode*, Nature Nano. (2015), doi:10.1038/nnano.2015.11 (report rectification ratio of 140) - F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech,
*Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots*, Phys. Rev. Lett.**114**, 146805 (2015) (voltage fluctuations are rectified to yield a direct current) - G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, H.
Lee, C.-B. Eom, C. S. Hellberg, and J. Levy,
*Electron pairing without superconductivity*, Nature**521**, 196 (2015) (quantum dot realized in part of a SrTiO_{3}nanowire; transport measurement showing evidence for pair tunneling, which can be understood assuming an attractive Hubbard interaction on the dot) - C. Rössler, D. Oehri, O. Zilberberg, G. Blatter, M. Karalic, J.
Pijnenburg, A. Hofmann, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider,
*Transport Spectroscopy of a Spin-Coherent Dot-Cavity System*, Phys. Rev. Lett.**115**, 166603 (2015) (the cavity acts like a tunable second quantum dot) - D. Imanaka, S. Sharmin, M. Hashisaka, K. Muraki, and T. Fujisawa,
*Exchange-Induced Spin Blockade in a Two-Electron Double Quantum Dot*, Phys. Rev. Lett.**115**, 176802 (2015) (experiments compared to an extension of an existing master-equation approach) - M. Akai-Kasaya, Y. Okuaki, S. Nagano, T. Mitani, and Y. Kuwahara,
*Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer*, Phys. Rev. Lett.**115**, 196801 (2015) - J. Gramich, A. Baumgartner, and C. Schönenberger,
*Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot*, Phys. Rev. Lett.**115**, 216801 (2015) (superconductor-quantum dot-normal metal structure; claims to be the first observation of elastic/resonant and inelastic Andreev tunneling in quantum dots; coupling of electrons to a bosonic bath, the nature of which is difficult to ascertain, or even to two bosonic baths) - D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven,
*Josephson φ*, Nature Phys._{0}-junction in nanowire quantum dots**12**, 568 (2016) (phase difference in ground state different from 0 or π, can be controlled by gate voltage) - A. Kurzmann, B. Merkel, P. A. Labud, A. Ludwig, A. D. Wieck, A. Lorke, and
M. Geller,
*Optical Blocking of Electron Tunneling into a Single Self-Assembled Quantum Dot*, Phys. Rev. Lett.**117**, 017401 (2016) (experiments compared to master-equation theory) - A. J. Keller, J. S. Lim, David Sánchez, Rosa López, S.
Amasha, J. A. Katine, H. Shtrikman, and D. Goldhaber-Gordon,
*Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots*, Phys. Rev. Lett.**117**, 066602 (2016) (experiment and theory [rate equations]; artificial double quantum dot, in parallel; cotunneling is needed to understand the drag effect)

- V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen,
*Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance*, Science**280**, 5363 (1998) - J. Li, W.-D. Schneider, R. Berndt, and B. Delley,
*Kondo Scattering Observed at a Single Magnetic Impurity*, Phys. Rev. Lett.**80**, 2893 (1998) (single Ce adatoms, STM study) - S. K. Nielsen, Y. Noat, M. Brandbyge, R. H. M. Smit, K. Hansen, L. Y.
Chen, A. I. Yanson, F. Besenbacher, and J. M. van Ruitenbeek,
*Conductance of single-atom platinum contacts: Voltage-dependence of the conductance histogram*, Phys. Rev. B**67**, 245411 (2003) - H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C.
Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, and A. Cornia,
*Electron Transport through Single Mn*, Phys. Rev. Lett._{12}Molecular Magnets**96**, 206801 (2006)**P** - W. H. A. Thijssen, D. Djukic, A. F. Otte, R. H. Bremmer, and J. M. van
Ruitenbeek,
*Vibrationally Induced Two-Level Systems in Single-Molecule Junctions*, Phys. Rev. Lett.**97**, 226806 (2006) - M.-H. Jo, J. E. Grose, K. Baheti, M. M. Deshmukh, J. J. Sokol, E. M.
Rumberger, D. N. Hendrickson, J. R. Long, H. Park, and D. C. Ralph,
*Signatures of Molecular Magnetism in Single-Molecule Transport Spectroscopy*, cond-mat/0603276, Nano Lett.**6**, 2014 (2006)**P** - Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson,
*Three-terminal devices to examine single molecule conductance switching*, cond-mat/0605609 ("three-terminal" here refers to source, drain, and gate electrodes) - L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L.
Steigerwald,
*Dependence of Single Molecule Junction Conductance on Molecular Conformation*, cond-mat/0607836, Nature - V. Iancu, A. Deshpande, and S.-W. Hla,
*Manipulation of Kondo Effect via Two-Dimensional Molecular Self-Assembly*, cond-mat/0611180 (STM study) - M. Kiguchi, R. Stadler, I. S. Kristensen, D. Djukic, and J.M. van
Ruitenbeek,
*Evidence for a single hydrogen molecule connected by an atomic chain*, cond-mat/0612681 (experiment and theory, discuss detailed structure of tip-molecule-tip region for H_{2}with Pt electrodes) - N. Néel, J. Kröger, L. Limot, T. Frederiksen,
M. Brandbyge, and R.
Berndt,
*Controlled Contact to a C*, Phys. Rev. Lett._{60}Molecule**98**, 065502 (2007) (STM study) - J. J. Parks, A. R. Champagne, G. R. Hutchison, S. Flores-Torres, H. D.
Abruna, and D. C. Ralph,
*Tuning the Kondo Effect with a Mechanically Controllable Break Junction*, Phys. Rev. Lett.**99**, 026601 (2007) (Kondo effect observed for C_{60}) - J. J. Henderson, C. M. Ramsey, E. del Barco, A. Mishra, and G. Christou,
*Fabrication of Nano-Gapped Single-Electron Transistors for Transport Studies of Individual Single-Molecule Magnets*, J. Appl. Phys.**101**, 09E102 (2007) (demonstrated for tunneling through Mn_{12}, relatively low voltage resolution) - W. Harneit, C. Boehme, S. Schaefer, K. Huebener, K. Fostiropoulos, and K.
Lips,
*Room Temperature Electrical Detection of Spin Coherence in C*, cond-mat/0702604 (tunneling through thick C_{60}_{60}film) - F. Miao, D. Ohlberg, D. Stewart, R. S. Williams, and C. N. Lau,
*Quantum Conductance Oscillations in Metal/Molecule/Metal Switches at Room Temperature*, cond-mat/0703259 (molecular monolayer of stearic acid) - A. Halbritter, P. Makk, Sz. Csonka, and G. Mihaly,
*Huge negative differential conductance in Au-H*, arXiv:0706.2083 (junction is in strong-hybridization regime, G shows a smeared-out_{2}molecular nanojunctions*downward*step at certain bias; also contains theory, which applies rate equation in sequential-tunneling approximation to two-level system) - E. A. Osorio, K. O'Neill, M. Wegewijs, N. Stuhr-Hansen, J. Paaske, T.
Bjornholm, and H. S. J. van der Zant,
*Electronic excitations of a single molecule contacted in a three-terminal configuration*, arXiv:0711.2592, Nano lett.**7**, 3336 (2007) (experiment and theory, a long molecule with long side chains, observe four charge states and Kondo peaks) - H. B. Akkerman and B. de Boer,
*Electrical conduction through single molecules and self-assembled monolayers*, J. Phys.: Condens. Matter**20**, 013001 (2008) (comparison of different setups) - O. Tal, M. Krieger, B. Leerink, and J. M. van Ruitenbeek,
*Electron-vibration interaction in single-molecule junctions: from contact to tunneling regime*, arXiv:0801.3031 (H_{2}O) - C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers,
*Charge Transport in Single Au|Alkanedithiol|Au Junctions: Coordination Geometries and Conformational Degrees of Freedom*, arXiv:0802.2407, J. Am. Chem. Soc.**130**, 318 (2008) (STM experiments and quantum chemistry calculations) - M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. C.
Cuevas, and J. M. van Ruitenbeek,
*Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes*, arXiv:0803.0563 - M. S. Hybertsen, L. Venkataraman, J. E. Klare, A. C. Whalley, M. L.
Steigerwald, and C. Nuckolls,
*Amine-Linked Single Molecule Circuits: Systematic Trends Across Molecular Families*, arXiv:0803.0582 (experiments and static DFT calculations in the GGA) - T. Frederiksen, K. J. Franke, A. Arnau, G. Schulze, J. I. Pascual, and N.
Lorente,
*Dynamic Jahn-Teller effect in electron transport through single C*, arXiv:0804.3415 (STM experiments and theory)_{60}molecules - C. Iacovita, M. V. Rastei, B. W. Heinrich, T. Brumme, J. Kortus, L.
Limot, and J. P. Bucher,
*Visualizing the spin of individual molecules*, arXiv:0805.0485 (STM for magnetic molecule on ferromagnetic nanoscopic electrode) - N. Roch, C. B. Winkelmann, S. Florens, V. Bouchiat, W. Wernsdorfer, and F.
Balestro,
*Kondo effects in a C*, arXiv:0809.2700; N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro,_{60}single-molecule transistor*Out-of-equilibrium singlet-triplet Kondo effect in a single C*, arXiv:0809.2706; N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro,_{60}quantum dot*Quantum phase transition in a single-molecule quantum dot*, arXiv:0809.2906, Nature**453**, 633 (2008), supplementary information at arXiv:0809.2922 - O. Tal, M. Kiguchi, W. H. A. Thijssen, D. Djukic, C. Untiedt, R. H. M.
Smit, and J. M. van Ruitenbeek,
*The molecular signature of highly conductive metal-molecule-metal junctions*, arXiv:0810.1873 - G. Kirczenow, P. G. Piva, and R. A. Wolkow,
*Modulation of Electrical Conduction Through Individual Molecules on Silicon by the Electrostatic Fields of Nearby Polar Molecules: Theory and Experiment*, arXiv:0812.3459 (STM experiments and ab-initio calculations) - G. D. Scott, Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson,
*Universal scaling of nonequilibrium transport in the Kondo regime of single molecule devices*, Phys. Rev. B**79**, 165413 (2009) (with C_{60}and a Cu^{2+}complex) - G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt,
*Passing Current through Touching Molecules*, Phys. Rev. Lett.**103**, 206803 (2009) (STM experiments on C_{60}on metal, also with C_{60}at tip, includes static DFT calculations) - H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee,
*Observation of molecular orbital gating*, Nature**462**, 1039 (2009) (electromigration of Au wire, transport data are interpreted in terms of specific molecular orbitals and the excitation of molecular vibrations, what is new?) - S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J.
Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman,
*Mechanically-Controlled Binary Conductance Switching of a Single-Molecule Junction*, arXiv:0901.1139 (experiments and static DFG/GGA+Landauer calculations for Au-4,4'-bipyridine-Au junctions) - M. R. Calvo, J. Fernández-Rossier, J. J. Palacios, D. Jacob, D.
Natelson, and C. Untiedt,
*The Kondo effect in ferromagnetic atomic contacts*, arXiv:0906.3135 (experiments on stretched wires of Fe, Co, and Ni, also with LSDA and LSDA+U-based theory) - C. B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat, and F. Balestro,
*Superconductivity in a single C*, arXiv:0908.3638, Nature Physics_{60}transistor**5**, 876 (2009) (single C_{60}in superconducting aluminum break junction, see clear signatures of superconducting gap and also the Kondo effect) - N. Roch, S. Florens, T. A. Costi, W. Wernsdorfer, and F. Balestro,
*Observation of the underscreened Kondo effect in a molecular transistor*, arXiv:0910.1092 (based on C_{60}) - G. Schull, T. Frederiksen, M. Brandbyge, and R. Berndt,
*Passing current through touching molecules*, arXiv:0910.1281 (STM experiments using C_{60}and ab-initio calculations using static DFT) - A. Eliasen, J. Paaske, K. Flensberg, S. Smerat, M. Leijnse, M.
R. Wegewijs, H. I. Jørgensen, M. Monthioux, and J. Nygård,
*Transport via coupled states in a C60 peapod quantum dot*, arXiv:1002.0477 (see signs of coupling to enclosed C60 molecules, with theoretical discussion) - D. Guérin, S. Lenfant, S. Godey, and D. Vuillaume,
*Synthesis and electrical properties of fullerene-based molecular junctions on silicon substrate*, arXiv:1003.1371, J. Mater. Chem. (2010), DOI: 10.1039/b924255d (self-assembled monolayers of C_{60}attached to electrodes by alkyl chains) - Y. F. Wang, J. Kröger, R. Berndt, H. Vázquez, M. Brandbyge,
and M. Paulsson,
*Atomic-Scale Control of Electron Transport through Single Molecules*, Phys. Rev. Lett.**104**, 176802 (2010) (STM experiments and static DFT calculations [SIESTA, TRANSIESTA], detailed study of various orientations of a flat molecule and of molecule-surface bonds) - A. D. Jewell, H. L. Tierney, A. E. Baber, E. V. Iski, M. M. Laha,
and E. C. H. Sykes,
*Time-resolved studies of individual molecular rotors*, J. Phys.: Condens. Matter**22**, 264006 (2010) (STM) - C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho,
*Viewing the Interior of a Single Molecule: Vibronically Resolved Photon Imaging at Submolecular Resolution*, Phys. Rev. Lett.**105**, 217402 (2010) (local excitation by STM, observe resulting luminescence), see also Viewpoint: M. Pivetta,*Mapping the luminescence of a single molecule*, Physics**3**, 97 (2010) - A. Bernand-Mantel, J. S. Seldenthuis, A. Beukman, H. S. J. van der
Zant, V. Meded, R. Chandrasekhar, K. Fink, M. Ruben, and F. Evers,
*Spin-coupled double-quantum-dot behavior inside a single-molecule transistor*, arXiv:1004.4556 - J. J. Parks, A. R. Champagne, T. A. Costi, W. W. Shum, A. N.
Pasupathy, E. Neuscamman, S. Flores-Torres, P. S. Cornaglia, A. A. Aligia, C.
A. Balseiro, G. K.-L. Chan, H. D. Abruñna, and D. C. Ralph,
*Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect*, arXiv:1005.0621 - N. Atodiresei, J. Brede, P. Lazic, V. Caciuc, G. Hoffmann, R.
Wiesendanger, and S. Blügel,
*Design of the Local Spin Polarization at the Organic-Ferromagnetic Interface*, Phys. Rev. Lett.**105**, 066601 (2010) (STM and DFT calculations for various cyclic molecules on iron on W(110)); see also Synopsis, Physics - A. S. Zyazin, J. W. G. van den Berg, E. A. Osorio, H. S. J. van der Zant,
N. P. Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter,
C. Danieli, and A. Cornia,
*Electric Field Controlled Magnetic Anisotropy in a Single Molecule*, arXiv:1009.2027, Nano Lett.**10**, 3307 (2010) (experiment on Fe_{4}complex and calculations up to fourth order in the hybridization; anisotropy found to depend strongly on charge state) - D. Secker, S. Wagner, S. Ballmann, R. Härtle, M. Thoss, and
H. B. Weber,
*Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture*, arXiv:1010.2998 (mechanical break junctions with different molecules) - C. Toher, R. Temirov, A. Greuling, F. Pump, M. Kaczmarski, M.
Rohlfing, G. Cuniberti, and F. S. Tautz,
*Electrical transport through a mechanically gated molecular wire*, arXiv:1011.1400 (STM experiment and DFT calculations) - Y. Kim, H. Song, F. Strigl, H.-F. Pernau, T. Lee, and E. Scheer,
*Mechanical control of vibrational states in single-molecule junctions*, arXiv:1011.3226 (1,6-hexanedithiol, Au or Pt leads, mechanical break junction) - Z. Cheng, S. Du, W. Guo, L. Gao, Z. Deng, N. Jiang, H. Guo, H. Tang, and
H.-J. Gao,
*Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O*, Nano Research_{2}-functionalized tip of a scanning tunneling microscope**4**, 523 (2011) - L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, and M.
Persson,
*High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip*, Phys. Rev. Lett.**107**, 086101 (2011) (very-high-resolution STM images showing absolute value square of molecular orbitals, compared to Tersoff-Hamann theory) - S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen,
E. Beaurepaire, F. Evers, and W. Wulfhekel,
*Magnetoresistance through a single molecule*, arXiv:1102.2630, Nature Nano. (H_{2}Pc, STM experiments and DFT+NEGF theory) - B. Chilian, A. A. Khajetoorians, S. Lounis, A. T. Costa, D. L. Mills,
J. Wiebe, and R. Wiesendanger,
*Anomalously large g-factor of single atoms adsorbed on a metal substrate*, arXiv:1108.2443 (Fe on Ag(111), enhanced g-factor can be understood from ab-initio calculations) - C. M. Guedon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen,
and S. J. van der Molen,
*Observation of Quantum Interference in Molecular Charge Transport*, arXiv:1108.4357 (several π-conjugated molecules, at room temperature) - A. Castellanos-Gomez, S. Bilan, L. A. Zotti, C. R. Arroyo, N. Agrait, J.
C. Cuevas, and G. Rubio-Bollinger,
*Carbon tips as electrodes for single-molecule junctions*, arXiv:1109.2089 (STM-based break junctions) - M. L. Perrin, C. A. Martin, F. Prins, A. J. Shaikh, R. Eelkema, J. H. van
Esch, J. M. van Ruitenbeek, H. S. J. van der Zant, and D Dulic,
*Charge Transport in a Zn-Porphyrin single molecule junction*, arXiv:1109.6434 (mechanically controlled break junction, no gate electrode,*IV*characteristics for molecular spectroscopy); M. L. Perrin, F. Prins, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, T. Briza, R. Kaplanek, V. Kral, J. M. van Ruitenbeek, H. S. J. van der Zant, and D. Dulic,*Influence of chemical structure on the stability and the conductance of porphyrin single-molecule junctions*, arXiv:1109.6447; D. Dulic, F. Pump, S. Campidelli, P. Lavie, G. Cuniberti, and A. Filoramo,*Controlled Stability of Molecular Junctions*, arXiv:1109.6450 - W. Chen, J. R. Widawsky, H. Vázquez, S. T. Schneebeli, M. S.
Hybertsen, R. Breslow, and L. Venkataraman,
*Highly Conducting pi-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes*, arXiv:1110.0344 (STM break junction, strong coupling to electrodes, also compared to DFT calculations) - F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N.
Aliaga-Alcalde, L. M. K. Vandersypen, H. S. J. van der Zant,
*Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes*, arXiv:1110.2335 (experimental methods) - I. Fernández-Torrente, D. Kreikemeyer-Lorenzo, A.
Strózecka, K. J. Franke1, and J. I. Pascual,
*Gating the Charge State of Single Molecules by Local Electric Fields*, Phys. Rev. Lett.**108**, 036801 (2012) (molecules on surfaces, among other results show how an effective gate voltage can be realized by the lateral [parallel to the surface] tip position) - T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F.
Scheurer, G. Rogez, T. K. Yamada, P. Ohresser, E. Beaurepaire, and W.
Wulfhekel,
*Robust spin crossover and memristance across a single molecule*, Nat. Commun.**3**, 938 (2012) (demonstrate purely electronic high-spin/low-spin switching) - J. R. Widawsky, P. Darancet, J. B. Neaton, and L. Venkataraman,
*Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions*, arXiv:1201.1837, Nano Lett. (2012) (STM, Au-molecule-Au, various molecules, mostly aromatic) - S. Ballmann, R. Härtle, P. B. Coto, M. Mayor, M. Elbing, M. R.
Bryce, M. Thoss, and H. B. Weber,
*Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions*, Phys. Rev. Lett.**109**, 056801 (2012) (break-junction experiments and DFT: stronger vibrations at higher temperatures can suppress interference and thereby enhance the current) - V. A. Sydoruk, D. Xiang, S. A. Vitusevich, M. V. Petrychuk, A.
Vladya, Y. Zhang, A. Offenhäusser, V. A. Kochelap, A. E. Belyaev, and D.
Mayer,
*Noise and Transport Characterization of Single Molecular Break Junctions with Individual Molecule*, arXiv:1206.3869 (mechanical break junctions, 1,4-benzenediamine) - J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S.
Klyatskaya, M. Ruben, and R. Wiesendanger,
*Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets*, Nature Commun.**3**, 953 (2012) (TbPc_{2}on Co, spin-polarized STM) - R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro,
*Electronic read-out of a single nuclear spin using a molecular spin transistor*, Nature**488**, 357 (2012) (TbPc_{2}, tunneling via the Pc system, exchange coupling to easy-axis Tb angular momentum*J*= 6, which is coupled to the Tb nuclear spin*I*= 3/2) - E. Minamitani, N. Tsukahara, D. Matsunaka, Y. Kim, N. Takagi, and M.
Kawai,
*Symmetry-Driven Novel Kondo Effect in a Molecule*, Phys. Rev. Lett.**109**, 086602 (2012) (STM, FePc on Au(111), SU(2) or SU(4) Kondo effect depending on position and thus symmetry) - E. Burzurí, A. S. Zyazin, A. Cornia, and H. S. J. van der Zant,
*Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet*, Phys. Rev. Lett.**109**, 147203 (2012) - Y. Kim, A. Garcia-Lekue, D. Sysoiev, T. Frederiksen, U. Groth, and E.
Scheer,
*Charge Transport in Azobenzene-Based Single-Molecule Junctions*, Phys. Rev. Lett.**109**, 226801 (2012) (mechanically controlled break junctions without gate, cis-trans isomerism, compared to calculations using static DFT + NEGF) - J. Fock, M. Leijnse, K. Jennum, A. S. Zyazin, J. Paaske, P.
Hedegård, M. B. Nielsen, and H. S. J. van der Zant,
*Manipulation of organic polyradicals in a single-molecule transistor*, Phys. Rev. B**86**, 235403 (2012) (three-center molecule, junction produced by electromigration, also theory: valence-bond model for the molecular, no details) - J. Bauer, J. I. Pascual, and K. J. Franke,
*Microscopic resolution of the interplay of Kondo screening and superconducting pairing*, arXiv:1208.3211 (MnPc on Pb(111), STS experiments, compared to NRG calculations) - D. Li, P. M. Gannet, and D. Lederman,
*An investigation into the feasibility of myoglobin-based single-electron transistors*, arXiv:1208.4184 - G. Ricœur, S. Lenfant, D. Guérin, and D. Vuillaume,
*Molecule-Electrode Interface Energetics in Molecular Junction: a Transition Voltage Spectroscopy Study*, arXiv:1208.5901, J. Phys. Chem C. (long paper, several self-assembled monolayers, various types of top contacts) - K. Reaves, K. Kim, K. Iwaya, T. Hitosugi, H. Zhao, K. R. Dunbar, H. G.
Katzgraber, and W. Teizer,
*STM Studies of Isolated Mn12-Ph Single Molecule Magnets*, arXiv:1210.5934 (on HOPG, which is imaged with atomic resolution, but the Mn12-Ph shows up as a bright blob in constant-current scans) - M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer,
*Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system*, Nature Nanotechnology (2013), doi:10.1038/nnano.2012.258 (TbPc_{2}side coupled to carbon nanotube) - S. Wagner
*et al.*,*Switching of a coupled spin pair in a single-molecule junction*, Nature Nanotechnology (2013), doi:10.1038/nnano.2013.133 (mechanical break junction, switched between singlet and triplet) - R. Chen, P. J. Wheeler, M. Di Ventra, and D. Natelson,
*Electron heating in atomic-scale Au break junctions*, arXiv:1306.6639 - G. Reecht, F. Scheurer, V. Speisser, Y. J. Dappe, F. Mathevet, and G.
Schull,
*Electroluminescence of a Polythiophene Molecular Wire Suspended between a Metallic Surface and the Tip of a Scanning Tunneling Microscope*, Phys. Rev. Lett.**112**, 047403 (2014) (luminiscence of a junction involving a single molecule suspended between a metal surface and an STM tip, induced by a bias voltage, emission from localized plasmon) - B. Weber
*et al.*,*Spin blockade and exchange in Coulomb-confined silicon double quantum dots*, Nature Nanotech. (2014), doi:10.1038/nnano.2014.63 (two P donors in Si forming double quantum dot, by "spin blockade" apparently mean Pauli blockade for equal-spin electrons in one of the dots) - T. Meier, F. Menges, P. Nirmalraj, H. Hölscher, H. Riel, and B.
Gotsmann,
*Length-Dependent Thermal Transport along Molecular Chains*, Phys. Rev. Lett.**113**, 060801 (2014) - S. Müllegger, S. Tebi, A. K. Das, W. Schöfberger, F.
Faschinger, and R. Koch,
*Radio Frequency Scanning Tunneling Spectroscopy for Single-Molecule Spin Resonance*, Phys. Rev. Lett.**113**, 133001 (2014) (TbPc_{2}) - D. Rakhmilevitch, R. Korytár, A. Bagrets, F. Evers, and O. Tal,
*Electron-Vibration Interaction in the Presence of a Switchable Kondo Resonance Realized in a Molecular Junction*, Phys. Rev. Lett.**113**, 236603 (2014) (transport experiment compared to DFT) - A. Burtzlaff, A. Weismann, M. Brandbyge, and R. Berndt,
*Shot Noise as a Probe of Spin-Polarized Transport through Single Atoms*, Phys. Rev. Lett.**114**, 016602 (2015) (measurements of noise spectra and corresponding Fano factors, compared to DFT/Landauer calculations) - B. Warner, F. El Hallak, H. Prüser, J. Sharp, M. Persson, A. J.
Fisher, and C. F. Hirjibehedin,
*Tunable magnetoresistance in an asymmetrically coupled single-molecule junction*, Nature Nanotech. (2015), doi:10.1038/nnano.2014.326 (very large effect of magnetic field in negativ-differential-conductance regime) - H. Rascón-Ramos, J. M. Artés, Y. Li, and J. Hihath,
*Binding configurations and intramolecular strain in single-molecule devices*, Nature Mat. (2015), doi:10.1038/nmat4216 (STM experiment with oscillating tip) - L. Liu
*et al.*,*Revealing the Atomic Site-Dependent g Factor within a Single Magnetic Molecule via the Extended Kondo Effect*, Phys. Rev. Lett.**114**, 126601 (2015) (STM experiment on MnPc on Au(111); the Zeeman splitting of the Kondo peak in applied magnetic field depends on the tip position) - S. Karan, D. Jacob, M. Karolak, C. Hamann, Y. Wang, A. Weismann, A. I.
Lichtenstein, and R. Berndt,
*Shifting the Voltage Drop in Electron Transport Through a Single Molecule*, Phys. Rev. Lett.**115**, 016802 (2015) (STM experiments compared to DFT calculations; shape of Kondo peak depends on the proximity of the tip from ligated Mn, attributed to change in voltage division and small geometric relaxation) - T. Yelin, R. Korytár, N. Sukenik, R. Vardimon, B. Kumar, C.
Nuckolls, F. Evers, and O. Tal,
*Conductance saturation in a series of highly transmitting molecular junctions*, Nature Mat. (2016), doi:10.1038/nmat4552 (break-junction experiments at large conductance, also DFT and model calculations) - C. Xu, C.-l. Chiang, Z. Han, and W. Ho,
*Nature of Asymmetry in the Vibrational Line Shape of Single-Molecule Inelastic Electron Tunneling Spectroscopy with the STM*, Phys. Rev. Lett.**116**, 166101 (2016) (experiment, compared to approximate Green-function calculations, Mathematica notebook included in supplement) - R. Frisenda and H. S. J. van der Zant,
*Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction*, Phys. Rev. Lett.**117**, 126804 (2016) (break junction, separation is tuned)

- P. W. Brouwer and A. Altland,
*Anderson localization from classical trajectories*, arXiv:0802.0976 (in ballistic quasi-1D conductors) - F. Ortmann, F. Bechstedt, and K. Hannewald,
*Theory of charge transport in organic crystals: Beyond Holstein's small-polaron model*, Phys. Rev. B**79**, 235206 (2009) (Holstein Hamiltonian, Lang-Firsov transformation onto polarons and phonons; resulting hopping terms containing phonon operators are replaced by the phonon thermal average, giving an effective polaron Hamiltonian; in current operators such an approximation is not made, they are averaged in standard Kubo expression; no further approximations, in particular of vanishing hopping of polarons ["narrow-band approximation"]; paper contains good review of approaches) - Y. Imry and A. Amir,
*The localization transition at finite temperatures: electric and thermal transport*, arXiv:1004.0966 - J. T. Chalker, T. S. Pickles, and P. Shukla,
*Anderson localisation in tight-binding models with flat bands*, arXiv:1008.3256 - S. Johri and R. N. Bhatt,
*Singular Behavior of Eigenstates in Anderson's Model of Localization*, arXiv:1106.1131 (inverse participation ratio shows singularities at certain energies, which are distinct from the mobility edge and are present in any number of dimensions, bounded disorder is required for this);*Singular Behavior of Anderson Localized Wavefunctions for a Two-Site Model*, arXiv:1205.5096 - C. Wickles and W. Belzig,
*Effective Quantum Theories for Transport in Inhomogeneous Systems with Non-trivial Band Structure*, arXiv:1209.4933 (semiclassical approach plus Berry curvatures) - R. C. Roundy, Z. V. Vardeny, and M. E. Raikh,
*Organic magnetoresistance near saturation: mesoscopic effects in small devices*, arXiv:1210.3443 (OMAR) - C. Karrasch, R. Ilan, and J. E. Moore,
*Nonequilibrium thermal transport and its relation to linear response*, arXiv:1211.2236 (for the case of diverging linear response due to nonzero Drude weight, applied to dimerized spin chain) - M. P. Mink, H. T. C. Stoof, R. A. Duine, M. Polini, and G. Vignale,
*Unified Boltzmann-transport theory for the drag resistivity close to a second-order phase transition*, arXiv:1306.5078 - A. R. Kolovsky,
*Master equation approach to conductivity of bosonic and fermionic carriers in one- and two-dimensional lattices*, arXiv:1306.6422 (beyond linear response) - J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach,
*Flatbands under Correlated Perturbations*, Phys. Rev. Lett.**113**, 236403 (2014) (effects of correlated disorder on flat bands) - G. Tatara,
*Thermal vector potential theory of transport induced by temperature gradient*, arXiv:1502.00347 (proposes a new description of thermal transport, starting from and apparently equivalent to Luttinger's; the introduced thermal vector potential is minimally coupled to the energy current; not a rigorous gauge theory but the author heuristically discusses its relation to energy conservation) - H. Javan Mard, E. C. Andrade, E. Miranda, and V. Dobrosavljevic,
*Non-Gaussian Spatial Correlations Dramatically Weaken Localization*, Phys. Rev. Lett.**114**, 056401 (2015) - I. L. Aleiner, A. V. Andreev, and V. Vinokur,
*Aharonov-Bohm Oscillations in Singly Connected Disordered Conductors*, Phys. Rev. Lett.**114**, 076802 (2015) (due to transport along surfaces) - S. V. Syzranov, L. Radzihovsky, and V. Gurarie,
*Critical Transport in Weakly Disordered Semiconductors and Semimetals*, Phys. Rev. Lett.**114**, 166601 (2015) - M. Schütt and R. M. Fernandes,
*Antagonistic In-Plane Resistivity Anisotropies from Competing Fluctuations in Underdoped Cuprates*, Phys. Rev. Lett.**115**, 027005 (2015) - A. Principi and G. Vignale,
*Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids*, Phys. Rev. Lett.**115**, 056603 (2015) (finding a simple relation between the relaxation time of the thermal current and the quasiparticle scattering rate) - R. Biele, R. D'Agosta, and A. Rubio,
*Time-Dependent Thermal Transport Theory*, Phys. Rev. Lett.**115**, 056801 (2015)**P** - D. K. Efimkin and V. Galitski,
*Anomalous Coulomb Drag in Electron-Hole Bilayers due to the Formation of Excitons*, Phys. Rev. Lett.**116**, 046801 (2016) (concentrations of electrons, holes, and interlayer excitons are calculated assuming equilibrium; the electrons/holes and the excitons are decoupled in the model and thus their contributions to the conductivity tensor simply add up; the excitons contribute a Drude conductivity, which also appears in the interlayer terms due to the interlayer nature of the excitons; the transconductivity of the electrons/holes results from standard Coulomb drag, which is calculated microscopically)

- J. Appelbaum,
*"s-d" Exchange Model of Zero-Bias Tunneling Anomalies*, Phys. Rev. Lett.**17**, 91 (1966) (this is the original suggestion that the zero-bias anomaly in tunneling is a manifestation of the Kondo effect; shows logarithmic singularity in third order of perturbation theory) - D. Ahn,
*Time-convolutionless reduced-density-operator theory of an arbitrary driven system coupled to a stochastic reservoir: Quantum kinetic equations for semiconductors*, Phys. Rev. B**50**, 8310 (1994) (not for a quantum dot, but technique is applicable)**P** - H. Schoeller and G. Schön,
*Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction*, Phys. Rev. B**50**, 18436 (1994) (large dot with dense spectrum)**P** - S. A. Gurvitz and Ya. S. Prager,
*Microscopic derivation of rate equations for quantum transport*, Phys. Rev. B**53**, 15932 (1996) (exact derivation of full master equation for reduced density matrix of a (double) dot with interaction and phonons,*T*= 0, applicable if at least one resonance lies deep inside the energy interval between the lead chemical potentials)**P** - K. A. Matveev, L. I. Glazman, and H. U. Baranger,
*Coulomb blockade of tunneling through a double quantum dot*, Phys. Rev. B**54**, 5637 (1996) - J. König, J. Schmid, H. Schoeller, and G. Schön,
*Resonant tunneling through ultrasmall quantum dots: Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport*, Phys. Rev. B**54**, 16820 (1996) (developing a diagrammatic approach employing the Keldysh time contour)**P** - J. König, H. Schoeller, and G. Schön,
*Cotunneling at Resonance for the Single-Electron Transistor*, Phys. Rev. Lett.**78**, 4482 (1997) (uses method of König*et al.*, PRB**54**, 16820 (1996), does not require an*ad hoc*cutoff to make the cotunneling contribution finite) - J. König, H. Schoeller, and G. Schön,
*Cotunneling and renormalization effects for the single-electron transistor*, Phys. Rev. B**58**, 7882 (1998) (limit of many channels, uses method of König*et al.*, PRB**54**, 16820 (1996), also comparison with renormalization group approach)**P** - W. B. Thimm, J. Kroha, and J. von Delft,
*Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain*, Phys. Rev. Lett.**82**, 2143 (1999) - M. Pustilnik and L. I. Glazman,
*Kondo effect induced by a magnetic field*, Phys. Rev. B**64**, 045328 (2001) - P. Coleman, C. Hooley, and O. Parcollet,
*Is the Quantum Dot at Large Bias a Weak-Coupling Problem?*, Phys. Rev. Lett.**86**, 4088 (2001) (no) - M. Turek and K. A. Matveev,
*Cotunneling thermopower of single electron transistors*, Phys. Rev. B**65**, 115332 (2002) (discusses renormalization scheme for divergence in the cotunneling contribution, later applied by J. Koch*et al.*) - P. S. Cornaglia and C. A. Balseiro,
*Kondo impurities in nanoscopic systems: Confinement-induced regimes*, Phys. Rev. B**66**, 115303 (2002) - N. A. Mortensen and J. C. Egues,
*Universal spin-polarization fluctuations in one-dimensional wires with magnetic impurities*, Phys. Rev. B**66**, 153306 (2002) - J.-X. Zhu and A. V. Balatsky,
*Quantum Electronic Transport through a Precessing Spin*, Phys. Rev. Lett.**89**, 286802 (2002)**P** - D. A. Bagrets and Yu. V. Nazarov,
*Full counting statistics of charge transfer in Coulomb blockade systems*, Phys. Rev. B**67**, 085316 (2003) (important work on FCS, uses rate equations) - J. Paaske, A. Rosch, and P. Wölfle,
*Nonequilibrium transport through a Kondo dot in a magnetic field: Perturbation theory*, Phys. Rev. B**69**, 155330 (2004) (starts with rather extensive review, applies diagrammatic perturbation theory for Keldysh Green functions to a fermionized impurity spin between reservoirs to obtain local spin polarization and current under a bias voltage to leading logarithmic order; no charge fluctuations); J. Paaske, A. Rosch, J. Kroha, and P. Wölfle,*Nonequilibrium transport through a Kondo dot: Decoherence effects*, Phys. Rev. B**70**, 155301 (2004) - S. Kehrein,
*Scaling and Decoherence in the Nonequilibrium Kondo Model*, Phys. Rev. Lett.**95**, 056602 (2005) (Kondo spin between two leads under bias, same model as in Paaske*et al.*, infinitesimal unitary transformations) - M. P. Das and F. Green,
*Ballistic transport is dissipative: the why and how*, cond-mat/0601459, J. Phys.: Condens. Matter**17**, V13 (2005) (the Landauer formula gives a finite resistivity - how is the energy dissipated?) - W. Belzig,
*Full counting statistics of super-Poissonian shot noise in multilevel quantum dots*, Phys. Rev. B**71**, 161301(R) (2005) - S. Braig and P. W. Brouwer,
*Rate equations for Coulomb blockade with ferromagnetic leads*, Phys. Rev. B**71**, 195324 (2005) - B. Dong, N. J. M. Horing, and H. L. Cui,
*Inelastic cotunneling-induced decoherence and relaxation, charge, and spin currents in an interacting quantum dot under a magnetic field*, Phys. Rev. B**72**, 165326 (2005) (extended Kondo model: local spin coupled to two leads, no other tunneling between the leads) - F. B. Anders and A. Schiller,
*Real-Time Dynamics in Quantum-Impurity Systems: A Time-Dependent Numerical Renormalization-Group Approach*, Phys. Rev. Lett.**95**, 196801 (2005) (NRG for impurity coupled to bath subject to a perturbation that is suddenly switched on, no transport geometry) - A. Donarini, T. Novotny, and A.-P. Jauho,
*Simple models suffice for the single-dot quantum shuttle*, New J. Phys.**7**, 237 (2005) (using and showing Wigner function of oscillator in various regimes) - I. Sela and D. Cohen,
*Adiabatic Transport is counter-intuitive*, cond-mat/0512500 (in a closed ring with two adiabatically changed delta barriers the transported charge per cycle can be made*Q*>>*e*) - O. Parcollet and X. Waintal,
*Theory of Spin Torque in a nanomagnet*, cond-mat/0512508 - M. Braun, J. König, and J. Martinek,
*Manipulating Single Spins in Quantum Dots Coupled to Ferromagnetic Leads*, cond-mat/0512519 (long paper using Keldysh formalism) - M. Albrecht, B. Song, and A. Schnurpfeil,
*A wave function based ab initio non-equilibrium Green's function approach to charge transport*, cond-mat/0512554 (another long paper introducing a wave-function based Keldysh formalism for charge transport) - R. Swirkowicz, M. Wilczynski, and J. Barnas,
*Spin-polarized transport through a single-level quantum dot in the Kondo regime*, J. Phys.: Condens. Matter**18**, 2291 (2006) (also consider the case of one ferromagnetic and one nonmagnetic lead; Keldysh formalism with approximate equation of motion approach)**P** - F. Pistolesi and R. Fazio,
*Dynamics and Current Fluctuations in AC driven Charge Shuttle*, New Journal of Physics**8**, 113 (2006) - P. Mehta and N. Andrei,
*Nonequilibrium Transport in Quantum Impurity Models: The Bethe Ansatz for Open Systems*, Phys. Rev. Lett.**96**, 216802 (2006) - U. Harbola, J. Maddox, and S. Mukamel,
*Many-body theory of current-induced fluorescence in molecular junctions*, Phys. Rev. B**73**, 075211 (2006);*Nonequilibrium superoperator Green's function approach to inelastic resonances in STM currents*, Phys. Rev. B**73**, 205404 (2006) - U. Harbola, M. Esposito, and S. Mukamel,
*Quantum master equation for electron transport through quantum dots and single molecules*, Phys. Rev. B**74**, 235309 (2006) (Hamiltonian without electron-electron interaction or internal degrees of freedom, deriving the master equation for the reduced density matrix, projected onto sectors with specific electron number, in second order [sequential tunneling])**P** - A. Ueda and M. Eto,
*Resonant tunneling and Fano resonance in quantum dots with electron-phonon interaction*, cond-mat/0601327 (Keldysh formalism) - M. Braun, J. König, and J. Martinek,
*Frequency-Dependent Current Noise through Quantum-Dot Spin Valves*, cond-mat/0601366 (using Keldysh formalism to obtain time dependence of reduced density matrix) - J. Twamley, D. W. Utami, H.-S. Goan, and G. J. Milburn,
*Spin-detection in a quantum electromechanical shuttle system*, cond-mat/0601448 - G. Vasseur, D. Weinmann, and J. A. Jalabert,
*Coulomb blockade without potential barriers*, cond-mat/0602166 - J. Luo, X.-Q. Li, and Y. Yan,
*Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach*, cond-mat/0603164, Phys. Rev. B - K. Zabrocki, S. Trimper, S. Tatur, and R. Mahnke,
*Relationship between a Non-Markovian Process and Fokker-Planck Equation*, cond-mat/0603252 - C. Flindt, A. S. Sorensen, and K. Flensberg,
*Spin-Orbit Mediated Control of Spin Qubits*, cond-mat/0603559 - H. Frahm, C. von Zobeltitz, N. Maire, and R. J. Haug,
*Fermi Edge Singularities in Transport through Quantum Dots*, cond-mat/0603668 - M. Hatami and M. Zareyan,
*Shot noise in diffusive ferromagnetic metals*, cond-mat/0604142 - Y. Tanaka and N. Kawakami,
*Transport through Double-Dots coupled to normal and superconducting leads*, cond-mat/0604212 - D. Klauser, W. A. Coish, and D. Loss,
*Quantum-dot spin qubit and hyperfine interaction*, cond-mat/0604252, Advances in Solid State Physics**46**(2006) - V. Meden,
*Correlation effects on electronic transport through dots and wires*, cond-mat/0604302, Advances in Solid State Physics**46**(2006) (functional renormalization group approach for quantum dots and wires) - J. Splettstoesser, M. Governale, J. König, and R. Fazio,
*Adiabatic pumping through interacting quantum dots: A perturbation expansion in the tunnel coupling*, cond-mat/0604369 - P. Stano and J. Fabian,
*Orbital and spin relaxation in single and coupled quantum dots*, cond-mat/0604633 - S. Kettemann,
*Dimensional Control of Antilocalisation and Spin Relaxation in Quantum Wires*, cond-mat/0605243 - D. A. Bagrets, Y. Utsumi, D. S. Golubev, and G. Schön,
*Full Counting Statistics of Interacting Electrons*, cond-mat/0605263 (one example considered is electron transport through quantum dots with strong interaction) - A. F. Izmaylov, A. I. Goker, P. Nordlander, and B. Friedman,
*On universality and non-universality for a quantum dot in the Kondo regime*, cond-mat/0605544 - M. Tolea and B. R. Bulka,
*Electronic transport through a quantum dot with a magnetic impurity using the equation of motion*, cond-mat/0606057 - J. Foros, A. Brataas, G. E. W. Bauer, and Y. Tserkovnyak,
*Resistance noise in spin valves*, cond-mat/0606131 - M. Pustilnik, E. G. Mishchenko, and O. A. Starykh,
*Generation of spin current by Coulomb drag*, cond-mat/0606185 (Coulomb drag between two quantum*wires*in a magnetic field) - I. Adagideli, G. E. W. Bauer, and B. I. Halperin,
*Detection of current-induced spins by ferromagnetic contacts*, cond-mat/0606193 - W. Wetzels, G. E. W. Bauer, and M. Grifoni,
*Exchange effects on electron transport through single-electron spin-valve transistors*, cond-mat/0608217 - A. Golub,
*Impact of Coulomb interaction and Kondo effect on transport in quantum dots*, cond-mat/0609436 - L. Dell'Anna, A. Zazunov, R. Egger, and T. Martin,
*Josephson current through a quantum dot with spin-orbit coupling*, cond-mat/0609577 - J. Fransson and J.-X. Zhu,
*Spin Dynamics in a Tunnel Junction between Ferromagnets*, cond-mat/0609673 - C.-Y. Tsau, D. Nghiem, R. Joynt, and J. W. Halley,
*Energy Level Statistics of Quantum Dots*, cond-mat/0610095 - W. A. Coish and D. Loss,
*Exchange-controlled single-spin rotations in quantum dots*, cond-mat/0610443 - P. Stano and J. Fabian,
*Control of electron spin and orbital resonance in quantum dots through spin-orbit interactions*, cond-mat/0611228 - F. M. Souza, J. C. Egues, and A. P. Jauho,
*Quantum Dot as a Spin-Current Diode*, cond-mat/0611336 (with one ferromagnetic lead)**P** - I. Weymann and J. Barnas,
*Cotunneling through quantum dots coupled to magnetic leads: zero-bias anomaly for non-collinear magnetic configurations*, cond-mat/0611447 - C. Karrasch,
*Transport Through Correlated Quantum Dots - A Functional Renormalization Group Approach*, cond-mat/0612329 (linear response regime) - T. Domanski, A. Donabidowicz, and K.I. Wysokinski,
*Influence of the pair coherence on the charge tunneling through a quantum dot connected to a superconducting lead*, cond-mat/0612440 (S-dot-N structure) - V. Koerting, P. Wölfle, and J. Paaske,
*Transconductance of a double quantum dot system in the Kondo regime*, cond-mat/0612566 (two separately contacted quantum dots coupled by antiferromagnetic exchange interaction) - J. Fernandez-Rossier and R. Aguado,
*Single Electron Transport in electrically tunable nanomagnets*, Phys. Rev. Lett.**98**, 106805 (2007) - A. Mitra and A. J. Millis,
*Coulomb Gas on the Keldysh Contour: Anderson-Yuval-Hamann representation of the Nonequilibrium Two Level System*, Phys. Rev. B**76**, 085342 (2007) (renormalization group for a degenerate orbital with nonstandard coupling to a local pseudo-spin 1/2, under nonzero bias, high-energy states in the leads are integrated out, main focus on methodology of RG for nonequilibrium system)**P** - D. Segal, D. R. Reichman, and A. J. Millis,
*Nonequilibrium quantum dissipation in spin-fermion systems*, Phys. Rev. B**76**, 195316 (2007) (considering the reduced density operator of a spin coupled to two leads at different chemical potential)**P** - D. Sztenkiel and R. Swirkowicz,
*Interference effects in a double quantum dot system with inter-dot Coulomb correlations*, J. Phys.: Condens. Matter**19**, 176202 (2007) (Green function formalism) - F. J. Kaiser and S. Kohler,
*Shot noise in non-adiabatically driven nanoscale conductors*, Annalen der Physik**16**, 702 (2007) (Floquet approach within both Green-function and master-equation formalisms) - B. Muralidharan and S. Datta,
*A Generic Model for Current Collapse in Spin Blockaded Transport*, cond-mat/0702161 - B. Lassen and A. Wacker,
*Electron Transport through Nanosystems Driven by Coulomb Scattering*, cond-mat/0703286 - C. Emary, D. Marcos, R. Aguado, and T. Brandes,
*Frequency-dependent counting statistics in interacting nanoscale conductors*, cond-mat/0703781 (using the*n*-resolved-density-matrix approach and assuming infinite bias) - Y. Y. Wang, J. H. Jiang, and M. W. Wu,
*Reexamination of spin decoherence in semiconductor quantum dots from equation-of-motion approach*, arXiv:0704.0148 (detailed study of the various spin relaxation mechanisms) - A. Nishino and N. Hatano,
*Resonance in an open quantum dot system with a Coulomb interaction: a Bethe-ansatz approach*, arXiv:0705.3994 - D. Herman, T. T. Ong, G. Usaj, H. Mathur, and H. U. Baranger,
*Level Spacings in Random Matrix Theory and Coulomb Blockade Peaks in Quantum Dots*, arXiv:0707.1620 - E. Sela, H. S. Sim, Y. Oreg, M. E. Raikh, and F. von Oppen,
*Electron Pair Resonance in the Coulomb Blockade*, arXiv:0707.2892 (time-dependent perturbation theory) - C.-H. Chung, G. Zaránd, and P. Wölfle,
*Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis*, arXiv:0707.3498 - N. Sandschneider and W. Nolting,
*Spin-polarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads*, arXiv:0708.2881 - T. L. Schmidt, A. Komnik, and A. O. Gogolin,
*Full counting statistics of spin transfer through ultrasmall quantum dots*, arXiv:0709.2779 - E. Bascones, V. Estevez, J. A. Trinidad, and A. H. MacDonald,
*Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays*, arXiv:0709.3718; E. Bascones, J. A. Trinidad, V. Estevez, and A. H. MacDonald,*Effect of the long-range interaction in transport through one-dimensional nanoparticle arrays*, arXiv:0709.3724 - D. Becker and D. Pfannkuche,
*Transport Through a Single-Level Quantum Dot in the Cotunneling Regime: Increase of Differential Conductance Peaks by Spin Relaxation*, arXiv:0710.1977 - F. Delgado and P. Hawrylak,
*Theory of electronic transport through a triple quantum dot in the presence of magnetic field*, arXiv:0712.0624 (no electron-electron interaction on dot, magnetic field enters through Peierls factors) - R. P. Hornberger, S. Koller, G. Begemann, A. Donarini, and M. Grifoni,
*Transport through a double quantum dot system with non-collinearly polarized leads*, arXiv:0712.0757 (Wangsness-Bloch-Redfield master equation) - J. E. Birkholz and V. Meden,
*Spin-orbit coupling effects in one-dimensional ballistic quantum wires*, J. Phys.: Condens. Matter**20**, 085226 (2008) - M. Governale, M. G. Pala, and J. König,
*Real-time diagrammatic approach to transport through interacting quantum dots with normal and superconducting leads*, Phys. Rev. B**77**, 134513 (2008), see also erratum - J. Gao, Q. Sun, and X. C. Xie,
*Quantum coherence effect in spin-polarized transport through nano-magnets*, J. Phys.: Condens. Matter**20**, 415216 (2008) (tunneling through magnetic dot described using the full quantum master equation) - N. A. Zimbovskaya,
*The electron transport through a quantum dot in the Coulomb blockade regime: Non-equilibrium Green's functions based model*, Phys. Rev. B**78**, 035331 (2008) (this works brings NEGF results for the step heights in line with master equation results) - A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev,
*Spin-Torque Shot Noise in Magnetic Tunnel Junctions*, Phys. Rev. Lett.**101**, 066601 (2008) (derive stochastic Landau-Lifshitz-Gilbert equations for a free ferromagnetic layer in contact with a fixed one, use the Keldysh formalism) - C. Flindt, T. Novotny, A. Braggio, M. Sassetti, and A.-P. Jauho,
*Counting Statistics of Non-Markovian Quantum Stochastic Processes*, arXiv:0801.0661 (master equation) - C. L. Romano, G. E. Marques, L. Sanz, and A. M. Alcalde,
*Phonon modulation of the spin-orbit interaction as a spin relaxation mechanism in quantum dots*, arXiv:0801.1699 - J. J. Krich and B. I. Halperin,
*Spin polarized current generation from quantum dots without magnetic fields*, arXiv:0801.2592 (due to spin-orbit coupling, use random-matrix theory) - M. Braun and G. Burkard,
*Non-adiabatic two-parameter charge and spin pumping in a quantum dot*, arXiv:0801.4925 - J. Splettstoesser, M. Governale, and J. König,
*Adiabatic charge and spin pumping through quantum dots with ferromagnetic leads*, arXiv:0802.0422 - V. V. Mkhitaryan and M. E. Raikh,
*Supergap anomalies in cotunneling between N-S and between S-S leads via a small quantum dot*, arXiv:0802.0586 (normal-superconducting and superconducting-superconducting leads, time-dependent perturbation theory in the tunneling amplitudes) - F. M. Souza, A. P. Jauho, and J. C. Egues,
*Spin-polarized Current and Shot Noise in the Presence of Spin-flip in a Quantum Dot*, arXiv:0802.0982 - L. O. Baksmaty, C. Yannouleas, and U. Landman,
*Nonuniversal transmission phases through a quantum dot: An exact-diagonalization of the many-body transport problem*, arXiv:0802.1064 (use a real-space wave-function approach, the "entailed exact diagonalization" [references are given], related to the CI method) - T. Brandes,
*Waiting Times and Noise in Single Particle Transport*, arXiv:0802.2233 - J. Koch and K. Le Hur,
*Discontinuous current-phase relations in small 1D Josephson junction arrays*, arXiv:0802.2351 - E. Khosravi, S. Kurth, G. Stefanucci, and E. K. U. Gross,
*The Role of Bound States in Time-Dependent Quantum Transport*, arXiv:0802.2516; E. Khosravi, G. Stefanucci, S. Kurth, and E. K. U. Gross,*Bound States in Time-Dependent Quantum Transport: Oscillations and Memory Effects in Current and Density*, arXiv:0803.0914 - S. Weiss, J. Eckel, M. Thorwart, and R. Egger,
*Iterative real-time path integral approach to nonequilibrium quantum transport*, arXiv:0802.3374 - M. Krawiec,
*Thermoelectric transport through a quantum dot coupled to a normal metal and BCS superconductor*, arXiv:0803.0208 - B. Solis, M. L. Ladron de Guevara, and P. A. Orellana,
*Friedel phase discontinuity and bound states in the continuum in quantum dot systems*, arXiv:0803.3573 - P. Wächter, V. Meden, and K. Schönhammer,
*The conductance of Luttinger liquid wires: towards experimental setups*, arXiv:0804.4108 - S. Kirino, T. Fujii, J. Zhao, and K. Ueda,
*Time-dependent DMRG Study on Quantum Dot under a Finite Bias Voltage*, arXiv:0805.0218 - Y. Dubi and M. Di Ventra,
*Theory of non-equilibrium thermoelectric effects in nanoscale junctions*, arXiv:0805.1415 (for non-interacting electrons, Lindblad equation)**P** - T. Hecht, A. Weichselbaum, Y. Oreg, and J. von Delft,
*Interplay of mesoscopic and Kondo effects for transmission amplitude of few-level quantum dots*, arXiv:0805.3145 (use NRG to calculate the dot Green function and from this the transmission amplitude, regime of small level width compared to level spacing, i.e., regime relevant for molecular junctions) - D. Urban, J. König, and R. Fazio,
*Coulomb-Interaction Effects in Full Counting Statistics of a Quantum-Dot Aharonov-Bohm Interferometer*, arXiv:0805.3697 (master equation formalism on the Keldysh contour) - J. Tailleur, J. Kurchan, and V. Lecomte,
*Mapping out of equilibrium into equilibrium in one-dimensional transport models*, arXiv:0809.0709, J. Phys. A (map several driving models onto isolated models showing detailed balance, also possible for some interacting problems; of general interest for nonequilibrium statistical physics) - A. Levchenko and A. Kamenev,
*Coulomb drag in quantum circuits*, arXiv:0809.1670 (two point contacts coupled by Coulomb interaction) - P. Werner, T. Oka, and A. J. Millis,
*Diagrammatic Monte Carlo simulation of non-equilibrium systems*, arXiv:0810.2345 (based on Keldysh formalism) - V. Kashcheyevs, C. Karrasch, T. Hecht, A. Weichselbaum, V. Meden, and A.
Schiller,
*A quantum criticality perspective on the charging of narrow quantum-dot levels*, arXiv:0810.2538 - V. Koerting, T. L. Schmidt, C. B. Doiron, B. Trauzettel, and C. Bruder,
*Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator*, arXiv:0810.5718 - Y. Dubi and M. Di Ventra,
*Thermo-spin effects in a quantum dot connected to ferromagnetic leads*, arXiv:0811.3265 - H. Zhang, G.-M. Zhang, and L. Yu,
*Spin transport properties of a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations*, arXiv:0811.3800 (using non-equilibrium Keldysh-Green functions) - P. Stefanski,
*Tunnelling magnetoresistance anomalies of Coulomb blockaded quantum dot*, arXiv:0812.1109 - P. Parida, S. Lakshmi, and S. K. Pati,
*Negative differential resistance in nanoscale transport in the Coulomb blockade regime*, J. Phys.: Condens. Matter**21**, 095301 (2009) - S.-H. Chen, C.-R. Chang, J. Q. Xiao, and B. K. Nikolic,
*Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach*, Phys. Rev. B**79**, 054424 (2009) - N. Winkler, M. Governale, and J. König,
*Diagrammatic real-time approach to adiabatic pumping through metallic single-electron devices*, Phys. Rev. B**79**, 235309 (2009) - S. Lindebaum, D. Urban, and J. König,
*Spin-induced charge correlations in transport through interacting quantum dots with ferromagnetic leads*, Phys. Rev. B**79**, 245303 (2009) (full counting statistics) - P. Zedler, G. Schaller, G. Kießlich, C. Emary, and
T. Brandes,
*Weak coupling approximations in non-Markovian Transport*, Phys. Rev. B**80**, 045309 (2009) (comparison of master-equation results with exact solution using Green functions) - R. K. Kaul, D. Ullmo, G. Zarand, S. Chandrasekharan, and H. U.
Baranger,
*Ground State and Excitations of Quantum Dots with "Magnetic Impurities"*, arXiv:0901.0016 - A. M. Lunde, A. De Martino, A. Schulz, R. Egger, and K. Flensberg,
*Electron-electron interaction effects in quantum point contacts*, arXiv:0901.1183 (relevant for 0.7 anomaly) - G. Benenti, G. Casati, T. Prosen, D. Rossini, and M. Znidaric,
*Charge and spin transport in strongly correlated 1D quantum systems driven far from equilibrium*, arXiv:0901.2032 (two interacting 1D electronic systems, mapped onto spin models, Lindblad master equation with biased insertion/extraction of electrons at the boundaries described by Lindblad operators, find distinct ballistic and diffusive regimes, the latter with strong negative differential conductance)**P** - T. Kwapinski, S. Kohler, and P. Hänggi,
*Discontinuous conductance of bichromatically ac-gated quantum wires*, arXiv:0901.2452 - T. Domanski and A. Donabidowicz,
*Electron pair current through the correlated quantum dot*, arXiv:0901.4248 (charge Kondo effect and pair tunneling) - T. Birol and P. W. Brouwer,
*Spin torque from tunneling through impurities in a magnetic tunnel junction*, arXiv:0902.1150 - Z. Ratiani and A. Mitra,
*1/N expansion of the nonequilibrium infinite-U Anderson Model*, arXiv:0902.1263 (slave-boson approach and Keldysh functional integral) - J. Prachar and T. Novotny,
*Charge conservation breaking within generalized master equation description of electronic transport through dissipative double quantum dots*, arXiv:0902.2382 - S.-H. Ouyang, C.-H. Lam, and J. Q. You,
*Shot noise in electron transport through a double quantum dot: A master equation approach*, arXiv:0902.3085 - R. S. Whitney, P. Marconcini, and M. Macucci,
*Symmetry causes a huge conductance peak in double quantum dots*, arXiv:0902.3099 (interference effect for mirror-symmetric double quantum dot) - C. Emary,
*Counting statistics of cotunneling electrons*, arXiv:0902.3544 - U. Schroeter and E. Scheer,
*Transport Channels in a Double Junction - coherent coupling changes the picture*, arXiv:0902.3545 - G. Cohen, V. Fleurov, and K. Kikoin,
*Time-dependent single electron tunneling through a shuttling nano-island*, arXiv:0903.1964 (between half-metallic ferromagnetic leads) - F. Elste, S. M. Girvin, and A. A. Clerk,
*Quantum Noise Interference and Back-action Cooling in Cavity Nanomechanics*, arXiv:0903.2242 (coupled electrodynamical and mechanical resonators, propose that the mechanical resonator can be cooled down to arbitrarily low temperatures) - F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto,
*Real-time simulations of nonequilibrium transport in the single-impurity Anderson model*, arXiv:0903.2414 (employ time-dependent DMRG) - P. Fritsch and S. Kehrein,
*Non-Equilibrium Kondo Model with Voltage Bias in a Magnetic Field*, arXiv:0903.2865 - V. Gudmundsson, C. Gainar, C.-S. Tang, V. Moldoveanu,
and A. Manolescu,
*Time-dependent transport via the generalized master equation through a finite quantum wire with an embedded subsystem*, arXiv:0903.3491 - M. Leijnse, M. R. Wegewijs, and M. H. Hettler,
*Pair-tunneling resonance in the single-electron transport regime*, arXiv:0903.3559 (produces a peak in the second derivative of the current at fourth order in tunneling amplitudes, but shows a slope in the (*V*,_{g}*V*)-diagram identical to that of sequential tunneling; not the mechanism discussed by Koch*et al.*) - R. Steinigeweg, J. Gemmer, H.-P. Breuer, and H.-J. Schmidt,
*Projection operator approach to transport in complex single-particle quantum systems*, arXiv:0903.5427 (time-convolutionless master equation with judicious choice of projection operator, for complex quasi-1D systems, the approach is applied to a single-particle model to facilitate comparison with numerical results) - S. M. Huang, Y. Tokura, H. Akimoto, K. Kono, J. J. Lin, S. Tarucha,
and K. Ono,
*Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings*, arXiv:0904.1046 (different g-factors, effect of misalignment of levels) - F. Cavaliere, M. Governale, and J. König,
*Non-adiabatic pumping through interacting quantum dots*, arXiv:0904.1687 - J. N. Pedersen and A. Wacker,
*Modeling of cotunneling in quantum dot systems*, arXiv:0904.3249, Physica E**42**, 595 (2010) - J. Danon and Yu. V. Nazarov,
*Pauli Spin Blockade in the Presence of Strong Spin-Orbit Coupling*, arXiv:0905.1818 - Ya. I. Rodionov, I. S. Burmistrov, and A. S. Ioselevich,
*Charge relaxation resistance in the Coulomb blockade problem*, arXiv:0905.2688 - D. Schuricht and H. Schoeller,
*Dynamical spin-spin correlation functions in the Kondo model out of equilibrium*, arXiv:0905.3095**P** - T. Ulbricht and P. Schmitteckert,
*Is spin-charge separation observable in a transport experiment?*, arXiv:0905.4743 (the authors claim yes) - R. S. Whitney, H. Schomerus, and M. Kopp,
*Semiclassical transport in nearly symmetric quantum dots I: internal symmetry breaking*, arXiv:0906.0891;*Semiclassical transport in nearly symmetric quantum dots II: symmetry-breaking due to asymmetric leads*, arXiv:0906.0892 - A. R. Hernández, F. A. Pinheiro, C. H. Lewenkopf, and E. R.
Mucciolo,
*Adiabatic Charge Pumping through Quantum Dots in the Coulomb Blockade Regime*, arXiv:0907.0038 - T. Ojanen, F. C. Gethmann, and F. von Oppen,
*Electromechanical instability in vibrating quantum dots with effectively negative charging energy*, arXiv:0907.3041 - S. Rotter and Y. Alhassid,
*The strong-coupling limit of a Kondo spin coupled to a mesoscopic quantum dot: effective Hamiltonian in the presence of exchange correlations*, arXiv:0907.5297 (a large, chaotic quantum dot with a Kondo spin) - K. Schönhammer,
*Full counting statistics for noninteracting fermions: Exact finite temperature results and generalized long time approximation*, arXiv:0908.1892 (1D tight-binding model and quantum dot with 1D leads) - X. Wang and A. J. Millis,
*Quantum criticality and non-Fermi-liquid behavior in a two level, two lead quantum dot*, arXiv:0909.3120 (QMC, also analytical results) - T. Karzig and F. von Oppen,
*Signatures of critical full counting statistics in a quantum-dot chain*, arXiv:0909.4470 - M. Pletyukhov, D. Schuricht, and H. Schoeller,
*Relaxation vs decoherence: Spin and current dynamics in the anisotropic Kondo model at finite bias and magnetic field*, arXiv:0910.0119 - M. W. Y. Tu, M.-T. Lee, and W.-M. Zhang,
*Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing*, arXiv:0910.0302 (based on the "exact master equation" formalism developed by Tu and Zhang); J. Jin, M. W. Y. Tu, W.-M. Zhang, and Y. Yan,*A nonequilibrium theory for transient transport dynamics in nanostructures via the Feynman-Vernon influence functional approach*, arXiv:0910.1675 - O. Entin-Wohlman, A. Aharony, Y. Tokura, and Y. Avishai,
*Spin-polarized electric currents in quantum transport*, arXiv:0911.1347 - S. Smirnov, D. Bercioux, M. Grifoni, and K. Richter,
*Charge ratchet from spin flip: space-time symmetry paradox*, arXiv:0911.3273 (a ratchet effect on charge transport due to spin-orbit coupling, even though the periodic potential is symmetric) - H. Schmidt and P. Wölfle,
*Transport through a Kondo quantum dot: Functional RG approach*, arXiv:0911.4383 - C. Karrasch, S. Andergassen, M. Pletyukhov, D. Schuricht, L. Borda, V.
Meden, and H. Schoeller,
*Non-equilibrium current and relaxation dynamics of a charge-fluctuating quantum dot*, arXiv:0911.5496 - S. G. Jakobs, M. Pletyukhov, and H. Schoeller,
*Nonequilibrium functional RG with frequency dependent vertex function - a study of the single impurity Anderson model*, arXiv:0911.5502 - S. Bandopadhyay and M. Hentschel,
*Anderson orthogonality catastrophe in realistic quantum dots*, arXiv:0912.1525 (parabolic quantum dot) - I. Weymann,
*The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads*, arXiv:0912.1948 (diagrammatics on Keldysh contour) - O. A. Tretiakov and A. Mitra,
*ac- and dc-driven noise and I-V characteristics of magnetic nanostructures*, Phys. Rev. B**81**, 024416 (2010) (Keldysh formalism, macrospin in ferromagnetic layer of N/F/N junction) - M. A. Laakso, T. T. Heikkilä, and Y. V. Nazarov,
*Fully Overheated Single-Electron Transistor*, Phys. Rev. Lett.**104**, 196805 (2010) (quantum dot coupled to phonons, electronic excitations may relax with excitation of phonons, thereby heating the dot; master equation with counting fields) - C. P. Moca, I. Weymann, and G. Zaránd,
*Theory of frequency-dependent spin current noise through correlated quantum dots*, Phys. Rev. B**81**, 241305(R) (2010) - A. Donarini, G. Begemann, and M. Grifoni,
*Interference effects in the Coulomb blockade regime: Current blocking and spin preparation in symmetric nanojunctions*, Phys. Rev. B**82**, 125451 (2010) - S. Koller, M. Leijnse, M. R. Wegewijs, and M. Grifoni,
*Density-operator approaches to transport through interacting quantum dots: simplifications in fourth order perturbation theory*, Phys. Rev. B**82**, 235307 (2010) (with a comparison of various master-equation approaches)**P** - V. Moldoveanu, A. Manolescu, C.-S. Tang, and V. Gudmundsson,
*Coulomb interaction and transient charging of excited states in open nanosystems*, arXiv:1001.0047 (focus on the transient currents, employ the quantum master equation) - I. Weymann and J. Barnas,
*Kondo effect in a quantum dot coupled to ferromagnetic leads and side-coupled to a nonmagnetic reservoir*, arXiv:1001.2475, Phys. Rev. B - J. Splettstoesser, M. Governale, J. König, and M. Büttiker,
*Charge and spin dynamics in interacting quantum dots*, arXiv:1001.2664 - R. Van Roermund, S.-Y. Shiau, and M. Lavagna,
*Anderson Model out of equilibrium: decoherence effects in transport through a quantum dot*, arXiv:1001.3873 - M. Lee, T. Jonckheere, and T. Martin,
*Josephson effect through a multilevel dot near a singlet-triplet transition*, arXiv:1001.3914 - I. C. Fulga, F. Hassler, and C. W. J. Beenakker,
*Nonzero temperature effects on antibunched photons emitted by a quantum point contact out of equilibrium*, arXiv:1001.4389 - C.-S. Tang, K. Torfason, and V. Gudmundsson,
*Magnetotransport in a time-modulated double quantum point contact system*, arXiv:1002.1551 (Lippmann-Schwinger scattering theory) - V. Gudmundsson, C.-S. Tang, O. Jonasson, V. Moldoveanu, and A.
Manolescu,
*Correlated time-dependent transport through a 2D quantum structure*, arXiv:1002.1556 (quantum master equation) - V. Gudmundsson, C.-S. Tang, C. M. Gainar, V. Moldoveanu, and A.
Manolescu,
*Time-dependent magnetotransport in semiconductor nanostructures via the generalized master equation*, arXiv:1002.1579 (quantum master equation) - C.-H. Chung, K.V.P. Latha, K. Le Hur, M. Vojta, and P. Wölfle,
*Tunable Kondo-Luttinger systems far from equilibrium*, arXiv:1002.1757 (quantum dot coupled to strictly one-dimensional leads) - C. Flindt, T. Novotny, A. Braggio, and A.-P. Jauho,
*Counting statistics of transport through Coulomb blockade nanostructures: high-order cumulants and non-Markovian effects*, arXiv:1002.4506 (non-Markovian quantum master equation, use superoperator notation) - A. Braggio, M. Governale, M. G. Pala, and J. König,
*Superconducting proximity effect in interacting quantum dots revealed by shot noise*, arXiv:1002.4629 (S-dot-N junction) - F. Elste, D. R. Reichman, and A. J. Millis,
*Effect of a Coulombic dot-lead coupling on the dynamics of a quantum dot*, arXiv:1003.0845 - C. A. Balseiro, Gonzalo Usaj, and M. J. Sanchez,
*Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach*, arXiv:1003.3847 (based on Meir-Wingreen formula) - T. A. Costi and V. Zlatic,
*Thermoelectric transport through strongly correlated quantum dots*, arXiv:1004.1519 (using a renormalization-group approach, relevance of the Kondo effect) - D. Marcos, C. Emary, T. Brandes, and R. Aguado,
*Finite-frequency counting statistics of electron transport: Markovian Theory*, arXiv:1004.1572 (quantum master equation, full counting statistics) - N. B. Kopnin, Y. M. Galperin, and V. M. Vinokur,
*Coulomb-enhanced resonance transmission of quantum SINIS junctions*, arXiv:1004.5288 (charging of Andreev bound states can preserve the resonant-tunneling condition) - P. Dutt, J. Koch, J. E. Han, and K. Le Hur,
*Effective Equilibrium Description of Nonequilibrium Quantum Transport I: Fundamentals and Methodology*, arXiv:1004.5591 (based on effective-density-matrix approach of Hershfield)**P**;*Effective Equilibrium Description of Nonequilibrium Quantum Transport II: Perturbation Theory for Interacting Models*, arXiv:1101.1526 - H. D. Cornean, C. Gianesello, and V. Zagrebnov,
*A partition-free approach to transient and steady-state charge currents*, arXiv:1005.3914 - H. Dai and D. K. Morr,
*Non-equilibrium Transport in dissipative one-dimensional Nanostructures*, arXiv:1006.1893 (Keldysh non-equilibrium Green functions, Coulomb repulsion treated perturbatively to second order, also include disordered on-site energies)**P** - J. Paaske, A. Andersen, and K. Flensberg,
*Exchange cotunneling through quantum dots with spin-orbit coupling*, arXiv:1006.2371 (start from quantum dot with charging energy, applied magnetic field, and spin-orbit coupling, reduce this to Anderson-type and then Kondo-type models, discuss effect of spin-orbit coupling) - C. Chamon, E. R. Mucciolo, L. Arrachea, and R. C. Capaz,
*Heat pumping in nanomechanical systems*, arXiv:1006.4874 - P. Wang and S. Kehrein,
*Flow Equation Calculation of Transient and Steady State Currents in the Anderson Impurity Model*, arXiv:1006.5203 (beyond linear response theory, use flow equation/infinitesimal unitary transformations) - J. Hong,
*Green's function technique for a two-electrode mesoscopic system under bias*, arXiv:1007.0615 (calculation of the local retarded Green function for the Meir-Wingreen formula in superoperator formalism) - H. Ness, L. K. Dash, and R. W. Godby,
*Generalization and applicability of the Landauer formula for non-equilibrium current in the presence of interactions*, arXiv:1007.1104 - K. R. Patton,
*Theory of correlated electron transport and inelastic tunneling spectroscopy*, arXiv:1007.1238 (derivation of the tunneling Hamiltonian, which contains a correlated-tunneling term) - L. Mühlbacher, D. F. Urban, and A. Komnik,
*Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data*, arXiv:1007.1793 (with two leads, MC simulation vs. perturbation theory) - S. Y. Mueller, V. Koerting, D. Schuricht, and S. Andergassen,
*Spin and orbital fluctuations in non-equilibrium transport through quantum dots: A renormalisation-group analysis*, arXiv:1007.3605 - S. A. Bender, Y. Tserkovnyak, and A. Brataas,
*Microwave Detection by a Magnetic Single-Electron Transistor*, arXiv:1007.4966 - C. P. Moca, P. Simon, C. H. Chung, and G. Zarand,
*Non-equilibrium frequency-dependent noise through a quantum dot: A real time functional renormalization group approach*, arXiv:1008.0150 - B. Sothmann, J. König, and A. Kadigrobov,
*Influence of spin waves on transport through a quantum-dot spin valve*, arXiv:1008.0948 (consider one bosonic spin-wave mode in each lead)**P** - D. Segal, A. J. Millis, and D. R. Reichman,
*Numerically exact path integral simulation of nonequilibrium quantum transport and dissipation*, arXiv:1008.5200 (numerical approach related to S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B**77**, 195316 (2008)) - L. Tosi, P. Roura-Bas, A. M. Llois, and L. O. Manuel,
*Effects of vertex corrections on diagrammatic approximations applied to the study of transport through a quantum dot*, arXiv:1009.1157 (Anderson model with two leads, linear response, conductance from local spectral function at the dot) - K. Flensberg,
*Tunneling characteristic of a chain of Majorana bound states*, arXiv:1009.3533 (Majorana bound states at randomness-induced boundaries between topologically trivial and non-trivial superconductors) - M. Tsaousidou and G. P. Triberis,
*Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency*, J. Phys.: Condens. Matter**22**, 355304 (2010) - M. Baumgärtel, M. Hell, S. Das, and M. R. Wegewijs,
*Spin quadrupoletronics: moving spin anisotropy around*, arXiv:1009.5874 (spin anisotropy, quantified by the average of the quadropole tensor, can be transfered to a quantum dot) - B. Sothmann and J. König,
*Transport through quantum-dot spin valves containing magnetic impurities*, arXiv:1009.5901 (two models: local spin in dot or in barrier, full master equation in sequential-tunneling approximation)**P** - G. Weick, F. von Oppen, and F. Pistolesi,
*Euler buckling instability and enhanced current blockade in suspended single-electron transistors*, arXiv:1010.0800 - F. Elste, D. R. Reichman, and A. J. Millis,
*Transport through a quantum dot with excitonic dot-lead coupling*, arXiv:1010.2251 (excitonic coupling to image charges, leads are Luttinger liquids) - A. Mitra and A. Rosch,
*Current induced decoherence in the multichannel Kondo problem*, arXiv:1010.2404 - S. Andergassen, M. Pletyukhov, D. Schuricht, H. Schoeller, and L.
Borda,
*A renormalization-group analysis of the interacting resonant level model at finite bias: Generic analytic study of static properties and quench dynamics*, arXiv:1010.5666 - O. Karlström, J. N. Pedersen, P. Samuelsson, and A. Wacker,
*Correlation- and Interference-Induced Suppression and Enhancement of Current in a two-level Quantum Dot*, arXiv:1011.4182 (2nd-order von Neumann approach [relation to perturbative master equation is briefly discussed], also compared to NEGF) - S. Grap, S. Andergassen, J. Paaske, and V. Meden,
*Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field*, arXiv:1011.5916 (functional RG, leads integrated out, giving Γ's) - S. Walter and B. Trauzettel,
*Momentum and position detection in nanoelectromechanical systems beyond Born and Markov approximations*, arXiv:1012.4649 (Keldysh formalism) - M. Leijnse and K. Flensberg,
*Majorana bound state spectroscopy via a Coulomb-blockaded quantum dot*, arXiv:1012.4650 (rate equations) - M. Znidaric,
*Quantum transport in 1d systems via a master equation approach: numerics and an exact solution*, arXiv:1012.4684 (time-dependent DMRG for the solution of the stationary Lindblad master equation for quantum wires) - B. Horváth, B. Lazarovits, and G. Zaránd,
*Fluctuation-exchange approximation theory of the non-equilibrium singlet-triplet transition*, arXiv:1012.5326 (Keldysh Green functions with FLEX, for tunneling through a quantum dot) - J. Y. Luo, H. J. Jiao, G. Cen, X.-L. He, and C. Wang,
*Full Counting statistics of level renormalization in electron transport through double quantum dots*, J. Phys.: Condens. Matter**23**, 145301 (2011) (quantum master equation, sequential-tunneling approximation) - S.-P. Chao and G. Palacios,
*Nonequilibrium transport in the Anderson model of a biased quantum dot: Scattering Bethe ansatz phenomenology*, Phys. Rev. B**83**, 195314 (2011) - F. Elste, D. Reichman, and A. Millis,
*Transport through a quantum dot with two parallel Luttinger liquid leads*, Phys. Rev. B**83**, 245405 (2011) ("|*|" geometry) - J. Hong,
*Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model*, J. Phys.: Condens. Matter**23**, 275602 (2011) - K. A. Matveev and A. V. Andreev,
*Equilibration of Luttinger Liquid and Conductance of Quantum Wires*, Phys. Rev. Lett.**107**, 056402 (2011) (corrections beyond the Luttinger liquid approximation) - P. Roura-Bas, L. Tosi, A. A. Aligia, and K. Hallberg,
*Interplay between quantum interference and Kondo effects in nonequilibrium transport through nanoscopic systems*, Phys. Rev. B**84**, 073406 (2011) (short paper, NCA, how is the current obtained?) - S. Smirnov and M. Grifoni,
*Slave-boson Keldysh field theory for the Kondo effect in quantum dots*, Phys. Rev. B**84**, 125303 (2011) (local constraint is implemented by exact projection, bosonic action is truncated after bilinear term);*Kondo effect in interacting nanoscopic systems: Keldysh field integral theory*, arXiv:1109.1540 - D. A. Lovey, S. S. Gomez, and R. H. Romero,
*Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer*, J. Phys.: Condens. Matter**23**, 425303 (2011) (four quantum dots in a ring with tunable tunneling along one diameter, no interactions, Landauer formula) - T. Karzig, G. Refael, L. I. Glazman, and F. von Oppen,
*Energy Partitioning of Tunneling Currents into Luttinger Liquids*, Phys. Rev. Lett.**107**, 176403 (2011) - A. Golub, I. Kuzmenko, and Y. Avishai,
*Kondo Correlations and Majorana Bound States in a Metal to Quantum-Dot to Topological-Superconductor Junction*, Phys. Rev. Lett.**107**, 176802 (2011) - D. Breyel and A. Komnik,
*Nonequilibrium transport properties of a double quantum dot in the Kondo regime*, Phys. Rev. B**84**, 155305 (2011) - B. M. Andersen, K. Flensberg, V. Koerting, and J. Paaske,
*Nonequilibrium Transport through a Spinful quantum Dot with Superconducting Leads*, Phys. Rev. Lett.**107**, 256802 (2011) (NEGF) - D. W. H. Swenson, T. Levy, G. Cohen, E. Rabani, and W. H. Miller,
*Application of a semiclassical model for the second-quantized many-electron Hamiltonian to nonequilibrium quantum transport: The resonant level model*, arXiv:1103.4405 (interesting semiclassical approach based on approximate expression for matrix elements in terms of action-angle variables; for non-interacting electron system) - Y. Li, M. B. A. Jalil, and S. G. Tan,
*Nonequilibrium Keldysh Formalism for Interacting Leads - Application to Quantum Dot Transport Driven by Spin Bias*, arXiv:1103.4920 - C. López-Monís, C. Emary, G. Kiesslich, G. Platero,
and T. Brandes,
*Limit-Cycles and Chaos in the Current Through a Quantum Dot*, arXiv:1104.3995 (based on Ehrenfest equations of motion, truncated in mean-field spirit, find periodic and chaotic solutions of the resulting nonlinear system of differential equations)**P** - V. Moldoveanu, H. D. Cornean, and C.-A. Pillet,
*Non-equilibrium steady-states for interacting open systems: exact results*, arXiv:1104.5399 (proof existence of steady state under certain weak conditions, Green-function approach) - H. D. Cornean and V. Moldoveanu,
*On the cotunneling regime of interacting quantum dots*, arXiv:1104.5412 (rigorous results for the current when the coupling to the leads is suddenly switched on)**P** - J. Jin, W.-M. Zhang, X.-Q. Li, and Y.-J. Yan,
*Cotunneling current noise spectrum through noninteracting systems: An exact n-resolved master equation approach*, arXiv:1105.0136 - E. Gull, D. R. Reichman, and A. J. Millis,
*Numerically Exact Long Time Behavior of Nonequilibrium Quantum Impurity Models*, arXiv:1105.1175 (corrections to the non-crossing approximation are evaluated by Monte Carlo simulations) - M. Schubotz and T. Brandes,
*Random backaction in tunneling of single electrons through nanostructures*, arXiv:1105.4422 - M. Tahir and A. MacKinnon,
*Time-dependent transport via a quantum shuttle*, arXiv:1105.5614 (NEGF) - A. Dhar, K. Saito, and P. Hänggi,
*Nonequilibrium density matrix description of steady state quantum transport*, arXiv:1106.3207 (exact but restricted to completely bilinear Hamiltonians) - F. W. Jayatilaka, M. R. Galpin, and D. E. Logan,
*Two-channel Kondo physics in tunnel-coupled double quantum dots*, arXiv:1106.5450 - A.-M. Uimonen, E. Khosravi, G. Stefanucci, S. Kurth, R. van Leeuwen, and
E. K. U. Gross,
*Real-time switching between multiple steady-states in quantum transport*, arXiv:1106.5631 - B. Hiltscher, M. Governale, J. Splettstoesser, and J. König,
*Adiabatic pumping in a double-dot Cooper pair beam splitter*, arXiv:1107.4236 - C. P. Moca, I. Weymann, and G. Zarand,
*Theory of a.c. spin current noise and spin conductance through a quantum dot in the Kondo regime I: The equilibrium case*, arXiv:1107.4265 - P. Trocha and J. Barnas,
*Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena*, arXiv:1108.2422 (linear response, Green function approach, Hartree-Fock approximation) - A. Zazunov, A. Levy Yeyati, and R. Egger,
*Coulomb blockade of Majorana fermion induced transport*, arXiv:1108.4308 (topological superconductor dot with Majorana bound states at contacts, Keldysh formalism)**P** - A. Rahmani, C.-Y. Hou, A. Feiguin, M. Oshikawa, C. Chamon, and I. Affleck,
*A general method for calculating the universal conductance of strongly-correlated junctions of multiple quantum wires*, arXiv:1108.4418 (linear response, zero temperature, based on boundary conformal field theory) - K. Torfason, A. Manolescu, V. Molodoveanu, and V. Gudmundsson,
*Generalized Master equation approach to mesoscopic time-dependent transport*, arXiv:1109.2301 (time-dependent coupling to leads, master equation is numerically integrated) - M. Nita, D. C. Marinescu, B. Ostahie, A. Manolescu, and V. Gudmundsson,
*Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions*, arXiv:1109.2572 - A. Levchenko, T. Micklitz, Z. Ristivojevic, and K. A. Matveev,
*Interaction effects on thermal transport in quantum wires*, arXiv:1109.3657 (weak electron-electron interaction) - W. A. Coish and F. Qassemi,
*Leakage-current lineshapes from inelastic cotunneling in the Pauli spin blockade regime*, arXiv:1109.4445 - M. Imran, B. Tariq, M. Tahir, and K. Sabeeh,
*Electron transport through a coupled double dot molecule: role of inter-dot coupling, phononic and dissipative effects*, arXiv:1109.4477 (Meir-Wingreen formula, no electron-electron interaction, first treat case of no electron-phonon interaction, then with electron-phonon interaction at the mean-field level) - H. Soller and A. Komnik,
*Hamiltonian approach to the charge transfer statistics of Kondo quantum dots contacted by a normal metal and a superconductor*, arXiv:1109.4520 (full counting statistics) - V. Gudmundsson, O. Jonasson, C.-S. Tang, H.-S. Goan, and A. Manolescu,
*Time-dependent transport of electrons through a photon cavity*, arXiv:1109.4728 (with Coulomb interaction, non-diagonal master equation with memory kernel, to second order in the tunneling) - S. Lindebaum and J. König,
*Theory of transport through noncollinear single-electron spin-valve transistors*, arXiv:1109.5800 (magnetization in ferromagnetic leads is noncollinear; quantum master equation, sequential tunneling approximation for the stationary state) - N. Bode, S. V. Kusminskiy, R. Egger, and F. von Oppen,
*Current-induced forces in mesoscopic systems: a scattering matrix approach*, arXiv:1109.6043 (long paper, unified theory for nanoelectromechanical systems) - S. Koller, J. Paaske, and M. Grifoni,
*Sources of negative tunneling magneto-resistance in multilevel quantum dots with ferromagnetic contacts*, arXiv:1109.6599 - A. A. Aligia,
*Nonequilibrium conductance of a nanodevice for small bias voltage*, arXiv:1110.0816 (NEGF, mainly linear response) - M. Dierl, P. Maass, and M. Einax,
*Classical Driven Transport in Open Systems with Particle Interactions and General Couplings to Reservoirs*, arXiv:1110.2198 (1D chains, model-based time-dependent DFT) - P. Zedler, C. Emary, T. Brandes, and T. Novotny,
*Noise calculations within the second-order von Neumann approach*, arXiv:1110.3253 (master equation) - J. Li, J. Jin, X.-Q. Li, and Y.-J. Yan,
*Improved master equation approach to quantum transport: From Born to self-consistent Born approximation*, arXiv:1110.4417 (based on Nakajima-Zwanzig master equation, "Born approximation" here means the sequential-tunneling approximation) - B. Muralidharan and M. Grifoni,
*Nanocaloritronic performance analysis of an interacting quantum dot thermoelectric system*, arXiv:1110.4537 - A. Croy, U. Saalmann, A. R. Hernández, and C. H. Lewenkopf,
*Non-adiabatic Electron Pumping through Interacting Quantum Dots*, arXiv:1110.5298 (Green-function equation-of-motion approach using auxiliary-mode expansion for the Fermi function) - R. Zitko, J. S. Lim, R. Lopez, J. Martinek, and P. Simon,
*Tunable Kondo effect in double quantum dot coupled to ferromagnetic contacts*, arXiv:1110.5819 - C. Eltschka and J. Siewert,
*Even-odd effect in the thermopower and strongly enhanced thermoelectric efficiency for superconducting single-electron transistors*, arXiv:1111.2629 (NSN structure) - K. Liu, K. Xia, and G. E. W. Bauer,
*Shot noise in magnetic tunnel junctions from first principles*, arXiv:1111.2681 (Fe/MgO/Fe) - L. D. Contreras-Pulido, J. Splettstoesser, M. Governale, J. König,
and M. Büttiker,
*Time scales in the dynamics of an interacting quantum dot*, arXiv:1111.4135 (a single reservoir; charge and spin relaxation times and a third time scale related to two-particle processes) - P. Myöhänen, R. Tuovinen, T. Korhonen, G. Stefanucci, and R. van
Leeuwen,
*Image charge dynamics in time-dependent quantum transport*, arXiv:1111.6104 (important effects of image charges, dot with two interacting orbitals, leads are one-dimensional chains, NEGF using the embedded Kadanoff-Baym method developed by some of the authors) - D. M. Kennes, S. G. Jakobs, C. Karrasch, and V. Meden,
*A renormalization group approach to time dependent transport through correlated quantum dots*, arXiv:1111.6982 (Keldysh NEGF with Meir-Wingreen type current expression and real-time fRG as approximation) - K. H. Bennemann,
*Spin Dependent Thermoelectric Currents of Tunnel Junctions, Small Rings and Quantum Dots: Onsager Theory*, arXiv:1112.1379 (review on transport in systems with reduced dimensions, emphasis on linear response, mostly own works) - E. G. Kavousanaki and G. Burkard,
*Signatures of spin blockade in the optical response of a charged quantum dot*, arXiv:1112.5596 - A. Oguri and Y. Tanaka,
*Transport through a single Anderson impurity coupled to one normal and two superconducting leads*, arXiv:1112.6053 (crossover between Kondo and Josephson/Andreev physics) - H. Ness and L. K. Dash,
*Nonequilibrium Charge Susceptibility and Dynamical Conductance: Identification of Scattering Processes in Quantum Transport*, Phys. Rev. Lett.**108**, 126401 (2012) (conceptionally important extension of charge susceptibility to non-equilibrium situation for junstions) - M. Busl and G. Platero,
*Triple quantum dots as charge rectifiers*, J. Phys.: Condens. Matter**24**, 154001 (2012) (due to destructive interference) - P. Stano, J. Fabian, and P. Jacquod,
*Non-linear spin to charge conversion in mesoscopic structures*, arXiv:1201.0249 - W. Lai, Y. Cao, and Z. Ma,
*Current-oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature*, J. Phys.: Condens. Matter**24**, 175301 (2012) (master equation, various regimes) - D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West,
*Exciton condensation and perfect Coulomb drag*, Nature**488**, 481 (2012) (interlayer excitons moving without dissipation); S. M. Girvin,*Quantum physics: Electrons in perfect drag*, Nature**488**, 464 (2012) - A. Martín-Rodero and A. Levy Yeyati,
*The Andreev states of a superconducting quantum dot: mean field vs exact numerical results*, J. Phys.: Condens. Matter**24**, 385302 (2012) (despite the title concerned with normal quantum dot with superconducting leads) - G. A. Skorobagatko, S. I. Kulinich, I. V. Krive, R. I. Shekhter, and
M. Jonson,
*Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot*, Low Temp. Phys.**37**, 1032 (2011) (without electron-electron interaction, dot-lead hopping couples to a vibronic mode, Landauer-Büttiker approach) - A. A. Dzhioev and D. S. Kosov,
*Nonequilibrium perturbation theory in Liouville-Fock space for inelastic electron transport*, arXiv:1201.1230 (inelastic charge transport through a quantum dot, method related to Lindblad and Keldysh NEGF approaches) - I. A. Sadovskyy, G. B. Lesovik, G. Blatter, T. Jonckheere, and T. Martin,
*Andreev quantum dot with several conducting channels*, arXiv:1201.2831 (a quantum dot in a gap in a superconducting ring pierced by magnetic flux) - A. G. Moghaddam, M. Governale, and J. König,
*Driven superconducting proximity effect in interacting quantum dots*, arXiv:1201.5032 (time-dependent tunneling between dot and superconducting lead) - D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and V. Meden,
*Understanding the Josephson current through a Kondo-correlated quantum dot*, arXiv:1201.5117 (QMC, linear conductance and dc Josephson effect) - A. Croy and U. Saalmann,
*Non-adiabatic Rectification and Current Reversal in Electron Pumps*, arXiv:1201.6333 (NEGF and auxiliary-mode expansion) - A. V. Kretinin, H. Shtrikman, and D. Mahalu,
*Universal lineshape of the Kondo zero-bias anomaly in a quantum dot*, arXiv:1201.6470 - K. Torfason, A. Manolescu, V. Molodoveanu, and V. Gudmundsson,
*Excitation of collective modes in a quantum flute*, arXiv:1202.0566 (master equation for short wire) - H. Ness and L. K. Dash,
*Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions*, arXiv:1202.3393 (NEGF, methodological development beyond Meir/Wingreen/Jauho) - V. Gudmundsson, O. Jonasson, T. Arnold, C.-S. Tang, H.-S. Goan, and
A. Manolescu,
*Stepwise introduction of model complexity in a generalized master equation approach to time-dependent transport*, arXiv:1203.3048 (electronic system in photonic cavity) - T. Can, H. Dai, and D. K. Morr,
*Current Eigenmodes and Dephasing in Nanoscopic Quantum Networks*, arXiv:1203.3198 - J. Li, T. C. A. Yeung, and C. H. Kam,
*Influence of electron scatterings on thermoelectric effect*, arXiv:1203.5562 - S. Ajisaka, F. Barra, C. Mejia-Monasterio, and T. Prosen,
*Nonequlibrium particle and energy currents in quantum chains connected to mesoscopic Fermi reservoirs*, arXiv:1204.1321 (the relaxation of the mesoscopic reservoirs is included explicitly by a Lindblad equation) - D. M. Kennes and V. Meden,
*Quench dynamics of correlated quantum dots*, arXiv:1204.2100 - A. Croy and A. Eisfeld,
*Dynamics of a nano-scale rotor driven by single-electron tunneling*, arXiv:1204.5918 - C. P. Orth, D. F. Urban, and A. Komnik,
*Finite frequency noise properties of the non-equilibrium Anderson impurity model*, arXiv:1205.0876 (Green-function approach, diagrammatic perturbation theory in*U*, for small and, using partial resummation, intermediate*U*) - J. E. Han, A. Dirks, and T. Pruschke,
*Imaginary-time quantum many-body theory out of equilibrium I: Formal equivalence to Keldysh real-time theory and calculation of static properties*, arXiv:1205.1816**P**; A. Dirks, J. E. Han, M. Jarrell, and T. Pruschke,*Imaginary-time quantum many-body theory out of equilibrium II: Analytic continuation of dynamic observables and transport properties*, arXiv:1205.1817**P** - D. Becker, S. Weiss, M. Thorwart, and D. Pfannkuche,
*Nonequilibrium quantum dynamics of the magnetic Anderson model*, arXiv:1205.2462 (method: iterative summation of real-time path integrals) - J. Splettstoesser, M. Governale, and J. König,
*Tunneling-induced renormalization in interacting quantum dots*, arXiv:1205.4913 (renormalization of system parameters by tunneling processes, perturbative analysis) - S. Lindebaum and J. Köonig,
*Current fluctuations of noncollinear single-electron spin-valve transistors*, arXiv:1206.0954 (Anderson impurity coupled to two leads with not collinear magnetization, non-diagonal master equation in sequential-tunneling approximation) - D. S. Kosov, T. Prosen, and B. Zunkovic,
*Markovian kinetic equation approach to electron transport through quantum dot coupled to superconducting leads*, arXiv:1206.3450 (Anderson impurity model, Born-Markov approximation, Lindblad equation to second order, complication lies in calculating the bath correlation functions) - K. Mosshammer, G. Kiesslich, and T. Brandes,
*Transport and semiclassical dynamics of coupled quantum dots interacting with a local magnetic moment*, arXiv:1206.5994 (electron spin coupled to a large local spin, which is treated semiclassical by Bloch-type equation, Lindblad equation, only at infinite bias) - M. Leijnse and K. Flensberg,
*Parity qubits and poor man's Majorana bound states in double quantum dots*, arXiv:1207.4299 (two dots connected by a superconducting wire realize two Majorana states, not topologically protected) - S. Illera, J. D. Prades, A. Cirera, and A. Cornet,
*A Transfer Hamiltonian model for devices based in quantum dot arrays*, arXiv:1207.5513 (for any distribution of quantum dots, bipolar transport [electrons and holes], sequential-tunneling approximation, interaction included via Poisson equation; illustrated for system of few quasi-randomly distributed dots); see also J. Sée, P. Dollfus, S. Galdin, and P. Hesto,*From wave-functions to current-voltage characteristics: overview of a Coulomb blockade device simulator using fundamental physical parameters*, cond-mat/0511652 - A. Goker and B. Uyanik,
*Transient thermoelectricity in a vibrating quantum dot in Kondo regime*, arXiv:1207.6054 - H. T. Mebrahtu, I. V. Borzenets, D. E. Liu, H. Zheng, Y. V. Bomze,
A. I. Smirnov, H. U. Baranger, and G. Finkelstein,
*Quantum Phase Transition in a Resonant Level Coupled to Interacting Leads*, arXiv:1208.1988 - T. Yuge, T. Sagawa, A. Sugita, and H. Hayakawa,
*Geometrical Pump in Quantum Transport: Quantum Master Equation Approach*, arXiv:1208.3926 (pumping by cycling tempertures and chemical potentials in the two leads, show that pumping is then only possible for interacting electrons) - A. Metelmann and T. Brandes,
*Transport through single-level systems: spin-dynamics in the nonadiabatic regime*, arXiv:1208.4574 - S. Pfaller, A. Donarini, and M. Grifoni,
*Subgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads*, arXiv:1208.6168 - M. Thomas, T. Karzig, S. V. Kusminskiy, G. Zarand, and F. von Oppen,
*Scattering theory of adiabatic reaction forces due to out-of-equilibrium quantum environments*, arXiv:1209.0620 (for nanoelectromechanical systems, scattering theory) - C. Pöltl, C. Emary, and T. Brandes,
*Spin entangled two-particle dark state in quantum transport through coupled quantum dots*, arXiv:1209.0992 - K.-C. Ri, C.-W. Ri, and G.-H. Jong,
*Electronic Transport through QD in the whole temperature range including both the high- and the low-T limits with the equation-of-motion technique*, arXiv:1209.2247 (NEGF, equation-of-motion approach) - S. Rojek, J. König, and A. Shnirman,
*Adiabatic pumping through an interacting quantum dot with spin-orbit coupling*, arXiv:1209.4770 (diagrammatic real-time approach) - R. D'Agosta,
*Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices*, arXiv:1209.5530 (beyond Landauer) - D. Futterer, J. Swiebodzinski, M. Governale, and J. König,
*Renormalization effects in interacting quantum dots coupled to superconducting leads*, arXiv:1210.2267 (two superconducting, one normal lead) - C.-H. Chung, K. Le Hur, G. Finkelstein, M. Vojta, and P. Wölfle,
*Non-equilibrium quantum transport through a dissipative resonant level*, arXiv:1211.3748 (spin-less orbital coupled to one vibrational mode, finite bias voltage, Keldysh NEGF and RG to study nonequilibrium [charge] Kondo effect) - R. S. Whitney,
*Thermodynamic and quantum bounds on nonlinear thermoelectric devices*, arXiv:1211.4737 - K. H. Thomas and C. Flindt,
*Electron Waiting Times in Non-Markovian Quantum Transport*, arXiv:1211.4995 - L. G. G. V. Dias da Silva, E. Vernek, K. Ingersent, N. P. Sandler, and S.
E. Ulloa,
*Spin-polarized conductance in double quantum dots: Interplay of Kondo, Zeeman and interference effects*, arXiv:1211.5289 - B. Abdollahipour, J. Abouie, and A. A. Rostami,
*Pumping ac Josephson current in the Single Molecular Magnets by spin nutation*, arXiv:1211.6879 (rotating echange field, NEGF) - S. Y. Mueller, M. Pletyukhov, D. Schuricht, and S. Andergassen,
*Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium*, arXiv:1211.7072 (no charge fluctuations; real-time RG approach of Schoeller and Schuricht) - K. P. Wojcik, I. Weymann, and J. Barnas,
*Asymmetry-induced effects in Kondo quantum dots coupled to ferromagnetic leads*, J. Phys.: Condens. Matter**25**, 075301 (2013) (strong coupling to leads) - E. Arrigoni, M. Knap, and W. von der Linden,
*Nonequilibrium Dynamical Mean Field Theory: An Auxiliary Quantum Master Equation Approach*, Phys. Rev. Lett.**110**, 086403 (2013) (non-equilibrium extension of DMFT, impurity problem involves single interacting site coupled to two chains, which are coupled to two reservoirs, the latter coupling described by Lindblad master equation with "forced insertion and removal" Lindblad operators and fitted coefficents; applied to a Hubbard layer with current flowing through it in the normal,*z*direction) - N. M. Chtchelkatchev, A. Glatz, and I. S. Beloborodov,
*Interplay of charge and heat transport in a nano-junction in the out-of-equilibrium cotunneling regime*, J. Phys.: Condens. Matter**25**, 185301 (2013) (inelastic cotunneling, Boltzmann-type kinetic equation) - S. Kim and Y.-W. Son,
*Scattering theory approach to inelastic transport in nanoscale systems*, Phys. Rev. B**87**, 195423 (2013) - R. Bustos-Marún, G. Rafael, and F. von Oppen,
*Adiabatic Quantum Motors*, Phys. Rev. Lett.**111**, 060802 (2013) (charges moving in a ring, driven by interaction with electrons flowing through a nanowire), see also Physics Viewpoint - L. Rajabi, C. Pöltl, and M. Governale,
*Waiting Time Distributions for the Transport through a Quantum-Dot Tunnel Coupled to One Normal and One Superconducting Lead*, Phys. Rev. Lett.**111**, 067002 (2013) (master equation) - X. Zheng, Y.-J. Yan, and M. Di Ventra,
*Kondo Memory in Driven Strongly Correlated Quantum Dots*, Phys. Rev. Lett.**111**, 086601 (2013) (use the hierarchical-equation-of-motion approach of Yan*et al.*, leads effectively have Lorentzian density of states) - F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo,
D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig,
*Microscopic origin of the '0.7-anomaly' in quantum point contacts*, Nature**501**, 73 (2013) (experiment and theory; explain 0.7 anomaly and zero-bias peak in terms of van Hove singularity of lower 1D subband; mechanism is essentially different from the Kondo effect); M. J. Iqbal, R. Levy, J. Koop, J. B. Dekker, J. P. de Jong, J. H. M. van der Velde, D. Reuter, A. D. Wieck, R. Aguado, Y. Meir, and C. H. van der Wal,*Odd and even Kondo effects from emergent localization in quantum point contacts*, Nature**501**, 79 (2013) (experiment and theory; contains conflicting explanation of 0.7 anomaly in terms of localized states in the contact region due to electron-electron interactions; this is essentially Kondo physics); see also Nature Phys.**9**, 530 (2013) - J. Zhang, Z. Yin, X. Zheng, C. Yam, and G. Chen,
*A gauge-invariant and current-continuous microscopic ac quantum transport theory*, arXiv:1301.0183 - D. M. Kennes, D. Schuricht, and V. Meden,
*Efficiency and power of a thermoelectric quantum dot device*, arXiv:1301.3355 (linear response, with short-range dot-lead interaction) - A. Dirks, S. Schmitt, J. E. Han, F. Anders, P. Werner, and T. Pruschke,
*Double Occupancy and Magnetic Susceptibility of the Anderson Impurity Model out of Equilibrium*, arXiv:1302.0269 - J. Kern,
*Tunneling Hamiltonian*, arXiv:1302.1391 - K. F. Albrecht, A. Martin-Rodero, R. C. Monreal, L. Mühlbacher, and
A. Levy Yeyati,
*Long transient dynamics in the Anderson-Holstein model out of equilibrium*, arXiv:1302.3108 (polaron effects) - L. Simine and D. Segal,
*Path-integral simulations with fermionic and bosonic reservoirs: Transport and dissipation in molecular electronic junctions*, arXiv:1302.5761 (numerical influence-functional path-integral approach to the time evolution) - J. Kern,
*A perturbation theory for the Anderson model*, arXiv:1302.6511 (master equation, expansion in the tunneling amplitude, partial resummation) - A. Koga,
*Quantum Monte Carlo study of nonequilibrium transport through a quantum dot coupled to normal and superconducting leads*, arXiv:1303.0288 (continuous-time QMC for time evolution of quantum dot) - O. V. Ogloblya and G. M. Kuznetsova,
*Nanotube Quantum Dot Transport With Spin-Orbit Coupling and Interacting Leads*, arXiv:1303.1451 (Coulomb interaction between dot and leads, NEGF) - S. Kohler,
*Measurement correlations in mesoscopic charge detection*, arXiv:1303.1662 - M. O. Assuncão, E. J. R. de Oliveira, J. M. Villas-Boas, and F. M.
Souza,
*Thermal effects on photon-induced quantum transport in a single quantum dot*, J. Phys.: Condens. Matter**25**, 135301 (2013) (laser-induced transport, NEGF) - A. Goker and E. Gedik,
*Time dependent quantum transport through Kondo correlated quantum dots*, arXiv:1303.2859 (slave-boson transformation, Meir-Wingreen formula, linear conductance and thermopower only) - N. Winkler, M. Governale, and J. König,
*Theory of spin pumping through an interacting quantum dot tunnel coupled to a ferromagnet with time-dependent magnetization*, arXiv:1303.4184 (diagrammatic real-time formulation, extended to allow for time-dependent lead properties) - A. Ivanov, G. Kordas, A. Komnik, and S. Wimberger,
*Bosonic transport through a chain of quantum dots*, arXiv:1304.5503 - H. Ness and L. K. Dash,
*Nonequilibrium Fluctuation-Dissipation Theorems for Interacting Quantum Transport*, arXiv:1305.5077 (NEGF approach) - R. Sánchez, B. Sothmann, A. N. Jordan, and M. Büttiker,
*Correlations of heat and charge currents in quantum-dot thermoelectric engines*, arXiv:1307.0598 (master equation with counting fields) - J. Baranski and T. Domanski,
*In-gap states of the quantum dot coupled between a normal and superconducting lead*, arXiv:1307.1004 - E. Wach, D. P. Zebrowski, and B. Szafran,
*Charge density mapping of strongly-correlated few-electron two-dimensional quantum dots by scanning probe technique*, arXiv:1307.1206 (relatively large dots, calculate charge density, not*dI*/*dV*, taking the effect of the tip on the dot into account) - F. G. Eich, A. Principi, M. Di Ventra, and G. Vignale,
*Luttinger-field approach to thermoelectric transport in nanoscale conductors*, Phys. Rev. B**90**, 115116 (2014) (application of ideas related to Phys. Rev. Lett.**112**, 196401 (2014) to a model system) - J. Danon and M. S. Rudner,
*Multilevel Interference Resonances in Strongly Driven Three-Level Systems*, Phys. Rev. Lett.**113**, 247002 (2014) - R. Härtle and A. J. Millis,
*The formation of nonequilibrium steady states in interacting double quantum dots: When coherences dominate the charge distribution*, arXiv:1409.3504**P** - R. Avriller and F. Pistolesi,
*Andreev Bound-State Dynamics in Quantum-Dot Josephson Junctions: A Washing Out of the 0-π Transition*, Phys. Rev. Lett.**114**, 037003 (2015) (Born-Markov master equation, Floquet theory) - M. Esposito, M. A. Ochoa, and M. Galperin,
*Quantum Thermodynamics: A Nonequilibrium Green's Function Approach*, Phys. Rev. Lett.**114**, 080602 (2015) (noninteracting, fermionic lead-dot-lead system)**P** - J.-T. Lü, R. B. Christensen, J.-S. Wang, P. Hedegård, and
M. Brandbyge,
*Current-Induced Forces and Hot Spots in Biased Nanojunctions*, Phys. Rev. Lett.**114**, 096801 (2015) (heat flow carried by phonons, induced by electron current; physics seems to be that right-moving electrons emit more right-moving phonons than left-moving phonons; many-particle theory and DFT) - E. Taylor and D. Segal,
*Quantum Bounds on Heat Transport Through Nanojunctions*, Phys. Rev. Lett.**114**, 220401 (2015) (Meir-Wingreen approach) - Z.-Z. Li, C.-H. Lam, and J. Q. You,
*Probing Majorana bound states via counting statistics of a single electron transistor*, Sci. Rep.**5**, 11416 (2015) (non-interacting model, Pauli master equation in sequential-tunneling approximation, for large bias) - A. E. Antipov, Q. Dong, and E. Gull,
*Voltage Quench Dynamics of a Kondo System*, Phys. Rev. Lett.**116**, 036801 (2016) - G. Vionnet and O. P. Sushkov,
*Enhancement Mechanism of the Electron g Factor in Quantum Point Contacts*, Phys. Rev. Lett.**116**, 126801 (2016) (due to combination of electron-electron interaction and nonequilibrium; Hartree-Fock approximation) - K. Kaasbjerg and A.-P. Jauho,
*Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures*, Phys. Rev. Lett.**116**, 196801 (2016) (higher-order master equation) - K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda,
*Quantum Thermal Transistor*, Phys. Rev. Lett.**116**, 200601 (2016) (with application to three spins) - A. Dorda, M. Ganahl, S. Andergassen, W. von der Linden, and E. Arrigoni,
*Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime*, arXiv:1608.05714 (non-equilibrium Anderson model; Keldysh approach)**P**

- L. Mayrhofer and M. Grifoni,
*Linear and nonlinear transport across carbon nanotube quantum dots*, cond-mat/0612286 (applies second-order Blum-type perturbation theory to a partly bosonized model for interacting electrons on a large single-wall nanotube) - J.-S. Wang, N. Zeng, J. Wang, and C. K. Gan,
*Nonequilibrium Green's function method for thermal transport in junctions*, cond-mat/0701164 (note: thermal transport, also for carbon-nanotube junctions)**P** - A. V. Andreev,
*Magnetoconductance of carbon nanotube p-n junctions*, arXiv:0706.0735 - I. Weymann, J. Barnas, and S. Krompiewski,
*Theory of shot noise in single-walled metallic carbon nanotubes weakly coupled to nonmagnetic and ferromagnetic leads*, arXiv:0710.2327 - N. Nemec, K. Richter, and G. Cuniberti,
*Diffusion and localization in carbon nanotubes and graphene nanoribbons*, arXiv:0804.4833 - B. Wunsch,
*Few-electron physics in a nanotube quantum dot with spin-orbit coupling*, arXiv:0904.0445 - E. Mariani and F. von Oppen,
*Electron-vibron coupling in suspended carbon nanotube quantum dots*, arXiv:0904.4653 (mainly interested in calculating the electron-vibron coupling, not the transport) - F. Cavaliere, E. Mariani, R. Leturcq, C. Stampfer, and M. Sassetti,
*Anisotropic Franck-Condon factors in suspended carbon nanotube quantum dots*, arXiv:0911.2122 - A. W. Cummings and F. Léonard,
*Electrostatic effects on contacts to carbon nanotube transistors*, arXiv:1106.2186 - A. Pályi, P. R. Struck, M. Rudner, K. Flensberg, and G. Burkard,
*Spin-Orbit-Induced Strong Coupling of a Single Spin to a Nanomechanical Resonator*, Phys. Rev. Lett.**108**, 206811 (2012), see also Physics Focus - G. Kirsanskas, J. Paaske, and K. Flensberg,
*Cotunneling renormalization in carbon nanotube quantum dots*, arXiv:1206.1359 - K. Goß, M. Leijnse, S. Smerat, M. R. Wegewijs, C. M. Schneider, and
C. Meyer,
*Parallel carbon nanotube quantum dots and their interactions*, arXiv:1208.5860 - P. R. Struck, H. Wang, and G. Burkard,
*Nanomechanical read-out of a single spin*, arXiv:1212.1569 (spin-orbit coupling is required; master equation) - J. E. Han and J. Li,
*Energy dissipation in DC-field driven electron lattice coupled to fermion baths*, arXiv:1304.4269 (non-interacting model, electric field included by time-dependent Peierls phase) - G. Micchi, R. Avriller, and F. Pistolesi,
*Mechanical Signatures of the Current Blockade Instability in Suspended Carbon Nanotubes*, Phys. Rev. Lett.**115**, 206802 (2015) - B. Brun, F. Martins, S. Faniel, B. Hackens, A. Cavanna, C. Ulysse,
A. Ouerghi, U. Gennser, D. Mailly, P. Simon, S. Huant, V. Bayot,
M. Sanquer, and H. Sellier,
*Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts*, Phys. Rev. Lett.**116**, 136801 (2016)

- A. V. Balatsky and I. Martin,
*Theory of single spin detection with STM*, cond-mat/0112407 - M. Zwolak and M. Di Ventra,
*DNA spintronics*, Appl. Phys. Lett.**81**, 925 (2002) - A. S. Alexandrov, A. M. Bratkovsky, and R. S. Williams,
*Bistable tunneling current through a molecular quantum dot*, Phys. Rev. B**67**, 075301 (2003) (hysteresis in*I-V*characteristics for ground state with degeneracy*d*> 2) - K. D. McCarthy, N. Prokof'ev, and M. T. Tuominen,
*Incoherent dynamics of vibrating single-molecule transistors*, Phys. Rev. B**67**, 245415 (2003) - A. Thielmann, M. H. Hettler, J. König, and G. Schön,
*Shot noise in tunneling transport through molecules and quantum dots*, Phys. Rev. B**68**, 115105 (2003) - Y. Xue and M. A. Ratner,
*Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport*, Phys. Rev. B**68**, 115406 (2003);*Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure*, Phys. Rev. B**68**, 115407 (2003) - K. Flensberg,
*Tunneling broadening of vibrational sidebands in molecular transistors*, Phys. Rev. B**68**, 205323 (2003) - V. Aji, J. E. Moore, and C. M. Varma,
*Electronic-vibrational coupling in single-molecule devices*, cond-mat/0302222, Int. J. Nanosci.**3**, 255 (2004) - A. Mitra, I. Aleiner, and A. J. Millis,
*Phonon effects in molecular transistors: Quantal and classical treatment*, Phys. Rev. B**69**, 245302 (2004) (inelastic tunneling, Wangsness-Bloch-Redfield approach for weak tunneling and NEGF approach for strong tunneling)**P** - G.-H. Kim and T.-S. Kim,
*Electronic Transport in Single-Molecule Magnets on Metallic Surfaces*, Phys. Rev. Lett.**92**, 137203 (2004) (model similar to Romeike*et al.*, without molecular orbitals, applied to STM tunneling in the weak-tunneling limit, uses Fermi's Golden Rule) - J. Paaske and K. Flensberg,
*Vibrational Sidebands and the Kondo Effect in Molecular Transistors*, Phys. Rev. Lett.**94**, 176801 (2005) - M. Galperin, M. A. Ratner, and A. Nitzan,
*Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model*, Nano Lett.**5**, 125 (2005); A. S. Alexandrov and A. M. Bratkovsky,*Comment on "Hysteresis, Switching, and Negative Differential Resistance in Molecular Junctions: A Polaron Model"*, cond-mat/0603467; M. Galperin, M. A. Ratner, and A. Nitzan,*Reply to Comment by Alexandrov and Bratkovsky*, cond-mat/0604112 - M. R. Wegewijs and K. C. Nowack,
*Nuclear wavefunction interference in single-molecule electron transport*, New J. Phys.**7**, 239 (2005) (effect of changes of the vibration potentials with electronic occupation, related to Koch and von Oppen) - K. A. Al-Hassanieh, C. A. Büsser, G. B. Martins, and E. Dagotto,
*Electron Transport through a Molecular Conductor with Center-of-Mass Motion*, Phys. Rev. Lett.**95**, 256807 (2005) (conductance dip at zero bias) - M. Galperin, A. Nitzan, and M. A. Ratner,
*Resonant inelastic tunneling in molecular junctions*, cond-mat/0510452, Phys. Rev. B - K. Walczak,
*The influence of vibronic coupling on the shape of transport characteristics in inelastic tunneling through molecules*, cond-mat/0510802 - N. Jean and S. Sanvito,
*Inelastic transport in molecular spin valves*, cond-mat/0511574 (1D chain with Einstein phonons) - T. T. Heikkila and W. Belzig,
*Slow Vibrations in Transport through Molecules*, cond-mat/0512047 - C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller,
*Quantum tunneling induced Kondo effect in single molecular magnets*, Phys. Rev. Lett.**96**, 196601 (2006) (zero bias, no molecular orbitals, discuss effect of anisotropy, use poor man's scaling and NRG)**P** - C. Romeike, M. R. Wegewijs, and H. Schoeller,
*Spin quantum tunneling in single molecular magnets: fingerprints in transport spectroscopy of current and noise*, Phys. Rev. Lett.**96**, 196805 (2006) (sequential tunneling, allow mixing of*S*eigenstates by magnetic tunneling not related to electronic tunneling, which leads to additional peaks in differential conductance)^{z}**P** - Z.-Z. Chen, H. Lu, R. Lü, and B. Zhu,
*Phonon-assisted Kondo effect in a single-molecule transistor out of equilibrium*, J. Phys.: Condens. Matter**18**, 5435 (2006) - H. Ness,
*Quantum inelastic electron-vibration scattering in molecular wires: Landauer-like versus Green's function approaches and temperature effects*, J. Phys.: Condens. Matter**18**, 6307 (2006) - M. N. Leuenberger and E. R. Mucciolo,
*Berry Phase Oscillations of the Kondo Effect in Single-Molecule Magnets*, Phys. Rev. Lett.**97**, 126601 (2006) (transverse magnetic field can quench the Kondo effect in transport, assuming strong coupling to metallic leads; Ni_{4}cluster) - K. Walczak,
*Coulomb blockade in molecular quantum dots*, cond-mat/0601379 - H. Ness and A. J. Fisher,
*Vibrational inelastic scattering effects in molecular electronics*, cond-mat/0603494, Proc. Nat. Acad. Sci.**102**, 8826 (2005) - M. Galperin, A. Nitzan, and M. A. Ratner,
*Inelastic tunneling effects on noise properties of molecular junctions*, cond-mat/0604029 (single-orbital molecule with one vibrational mode, which is coupled to a phonon bath, concentrate on noise) - A. Donarini, M. Grifoni, and K. Richter,
*Dynamical symmetry breaking in transport through molecules*, cond-mat/0605123 (... due to quasi-degenerate vibrational eigenstates) - C. Benjamin, T. Jonckheere, A. Zazunov, and T. Martin,
*Controllable pi junction in a Josephson quantum-dot device with molecular spin*, cond-mat/0605338 (model with one molecular orbital without Coulomb interaction, coupled to a local static exchange field and superconducting leads in equilibrium [thus does not really belong here])**P** - C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller,
*Kondo-transport spectroscopy of single molecule magnets*, Phys. Rev. Lett.**97**, 206601 (2006) (zero bias, discuss strong anisotropy, employ NRG)**P** - G. Fagas, P. Delaney, and J. C. Greer,
*Independent particle descriptions of tunneling from a many-body perspective*, cond-mat/0606026 (applied to metal-molecule-metal junction, goal is to find an optimal single-electron description for the many-body system) - J. Lehmann and D. Loss,
*Sequential Tunneling through Anisotropic Heisenberg Spin Rings*, cond-mat/0608642 (molecules with spins arranged in a ring, importance of Zener double exchange [the Hamiltonian describes a phenomenological Zener model, double exchange is at best present as the possible origin of the nearest-neighbor exchange interaction]) - B. Muralidharan, A. W. Ghosh, S. K. Pati, and S. Datta,
*Theory of high bias Coulomb Blockade in ultrashort molecules*, cond-mat/0610244 (benzene, Hubbard model, rate equations for many-particle states, also compares to single-electron approach) - M. Galperin, M. A. Ratner, and A. Nitzan,
*Heat conduction in molecular transport junctions*, cond-mat/0611169 (long paper) - F. Pump and G. Cuniberti,
*Rectification effects in coherent transport through single molecules*, cond-mat/0611436 - M. Misiorny and J. Barnas,
*Quantum Tunneling of Magnetization in Single Molecular Magnets Coupled to Ferromagnetic Reservoirs*, cond-mat/0611644 (with time-dependent magnetic field) - M. Misiorny and J. Barnas,
*Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current*, Phys. Rev. B**75**, 134425 (2007) (with two ferromagnetic leads, no explicit molecular orbital, direct left-right tunneling similar to Romeike*et al.*) - B. Song, D. A. Ryndyk, and G. Cuniberti,
*Molecular junctions in the Coulomb blockade regime: rectification and nesting*, Phys. Rev. B**76**, 045408 (2007) (connects master equation and Green functions) - M. Misiorny and J. Barnas,
*Spin polarized transport through a single-molecule magnet: Current-induced magnetic switching*, Phys. Rev. B**76**, 054448 (2007) (with explicit LUMO exchange-coupled to local spin, Fermi's Golden Rule) - T. Korb, F. Reininghaus, H. Schoeller, and J. König,
*Real-time renormalization group and cutoff scales in nonequilibrium*, Phys. Rev. B**76**, 165316 (2007) (exchange scattering from single spin between two leads, with anisotropic exchange and on-site anisotropy, cotunneling regime, meaning here: no charge fluctuations)**P** - G. Gonzalez and M. N. Leuenberger,
*Berry-phase blockade in single-molecule magnets*, Phys. Rev. Lett.**98**, 256804 (2007) (sequential tunneling, two ferromagnetic leads, interference effects)**P** - S. Florens,
*Nano-DMFT for molecules, ultrasmall particles and inhomogeneous materials in the strong correlation regime*, cond-mat/0701725 (includes a bias voltage) - M. Paulsson and M. Brandbyge,
*Transmission eigenchannels from non-equilibrium Green's functions*, cond-mat/0702295 - M. G. Schultz, T. S. Nunner, and F. von Oppen,
*Berry-phase effects in transport through single Jahn-Teller molecules*, cond-mat/0702489 - H. Raza,
*An EHT based model for Single Molecule Incoherent Resonant Scanning Tunneling Spectroscopy*, cond-mat/0703236 (EHT = extended Hückel theory) - K. Walczak,
*Vibrational features in inelastic electron tunneling spectra*, cond-mat/0703559 (non-perturbative approach for strong-tunneling regime) - M. Misiorny and J. Barnas,
*Current-Induced Switching of a Single-Molecule Magnet with Arbitrary Oriented Easy Axis*, arXiv:0704.2497 (a model without explicit molecular orbitals, but with spin-scattering of tunneling electrons off the local spin, find strong dependence of current on misalignment angle)**P** - P. San-Jose, G. Schön, A. Shnirman, and G. Zarand,
*Spin dephasing due to a random Berry phase*, arXiv:0704.2974 (effect of spin-orbit coupling) - B. Dong, X. L. Lei, and N. J. M. Horing,
*Elimination of negative differential conductance in an asymmetric molecular transistor by an ac-voltage*, arXiv:0705.2624 - A. S. Alexandrov and A. M. Bratkovsky,
*Fast polaron switching in degenerate molecular quantum dots*, J. Phys.: Condens. Matter**19**, 255203 (2007) - A. Landau, L. Kronik, and A. Nitzan,
*Cooperative effects in molecular conduction*, arXiv:0707.3038 (tunneling through molecular monolayers, tight-binding model) - G. Li, M. Schreiber, and U. Kleinekathöfer,
*Coherent laser control of the current through molecular junctions*, arXiv:0708.3429, Europhys. Lett.**79**, 27006 (2007); U. Kleinekathöfer, G. Li, S. Welack, and M. Schreiber,*Switching the current through molecular wires*, arXiv:0708.3432, Europhys. Lett.**75**, 129 (2006); U. Kleinekathöfer, G. Li, S. Welack, and M. Schreiber,*Coherent destruction of the current through molecular wires using short laser pulses*, arXiv:0708.3433, phys. stat. sol. (b)**243**, 3775 (2006) - J. Lagerqvist, M. Zwolak, and M. Di Ventra,
*Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport*, arXiv:0708.4395 (tight-binding model, result is that sequencing in a nanochannel should be feasible) - M. C. Lüffe, J. Koch, and F. von Oppen,
*Vibrational absorption sidebands in the Coulomb blockade regime*, arXiv:0709.0876 - P. S. Cornaglia, Gonzalo Usaj, and C. A. Balseiro,
*Electronic Transport through Magnetic Molecules with Soft Vibrating Modes*, arXiv:0711.0394 (employing the NRG) - R. Egger and A. O. Gogolin,
*Vibration-induced correction to the current through a single molecule*, arXiv:0712.0750 (NEGF formalism, perturbation theory for small electron-vibron coupling) - G. Begemann, D. Darau, A. Donarini, and M. Grifoni,
*Symmetry fingerprints of a benzene single-electron transistor: Interplay between Coulomb interaction and orbital symmetry*, Phys. Rev. B**77**, 201406(R) (2008), also note erratum (Hubbard-type model, quantum master equation in secular and sequential-tunneling approximation; find different conductance for meta- and para-contacted benzene due to interference between degenerate MOs); D. Darau, G. Begemann, A. Donarini, and M. Grifoni,*A benzene interference single-electron transistor*, Phys. Rev. B**79**, 235404 (2009) (extension, with symmetry analysis); A. Donarini, G. Begemann, and M. Grifoni,*All-Electric Spin Control in Interference Single Electron Transistors*, Nano Lett.**9**, 2897 (2009) (with ferromagnetic leads) - G. Gonzalez, M. N. Leuenberger, and E. R. Mucciolo,
*Kondo effect in single-molecule magnet transistors*, Phys. Rev. B**78**, 054445 (2008) - P. D'Amico, D. A. Ryndyk, G. Cuniberti, and K.
Richter,
*Charge-memory effect in a polaron model: equation-of-motion method for Green functions*, New J. Phys.**10**, 085002 (2008); D. A. Ryndyk, P. D'Amico, G. Cuniberti, and K. Richter,*Charge-memory polaron effect in molecular junctions*, Phys. Rev. B**78**, 085409 (2008) - J. S. Seldenthuis, H. S. J. van der Zant, M. A. Ratner, and J. M.
Thijssen,
*Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis*, ACS Nano**2**, 1445 (2008) (rate equations for sequential tunneling, vibration modes obtained from DFT);*Understanding electroluminescence spectra in weakly coupled single-molecule junctions*, arXiv:1002.4542 - J. K. Viljas, F. Pauly, and J. C. Cuevas,
*Photoassisted transport in organic molecular wires: length-dependence and current-voltage characteristics*, arXiv:0801.1323 (tight-binding model for polyphenylene chains without electron-electron interactin) - R. Härtle, C. Benesch, and M. Thoss,
*Multimode vibrational effects in single molecule conductance: A nonequilibrium Green's function approach*, arXiv:0801.3602 (NEGF approach, long laper) - J. Skoldberg, T. Lofwander, V. S. Shumeiko, and M. Fogelstrom,
*Andreev bound state spectroscopy in superconducting molecular junctions*, arXiv:0801.3608 (molecule between superconducting leads, the focus is on properties of the leads and the point contact, not the molecule) - M. Misiorny and J. Barnas,
*Effects of Intrinsic Spin-Relaxation in Molecular Magnets on Current-Induced Magnetic Switching*, arXiv:0801.3655 (with two ferromagnetic leads, tunneling included at Golden-Rule level) - M. Galperin, A. Nitzan, and M. A. Ratner,
*Non-linear response of molecular junctions: The polaron model revisited*, arXiv:0801.3783 (Green function approach) - H. Raza and E. C. Kan,
*An atomistic quantum transport solver with dephasing for field-effect transistors*, arXiv:0802.2357 (detailed modelling of atomistic structure and electric potential, interaction treated at Hartree level) - F. Reckermann, M. Leijnse, M. R. Wegewijs, and H. Schoeller,
*Transport signature of pseudo-Jahn-Teller dynamics in a single-molecule transistor*, arXiv:0802.3326;*Vibrational detection and control of spin in mixed-valence molecular transistors*, arXiv:0802.3498, Europ. Phys. Lett.**83**, 58001 (2008) - M. Leijnse and M. R. Wegewijs,
*Kinetic equations for transport through single-molecule transistors*, Phys. Rev. B**78**, 235424 (2008) (consistent perturbative expansion of master equation to fourth order, discuss cotunneling-assisted sequential tunneling)**P** - J. P. Bergfield and C. A. Stafford,
*Many-body treatment of quantum transport through single molecules*, arXiv:0803.2756 (combines exact diagonalization of molecular Hamiltonian with NEGF approach to obtain the current) - T. Jonckheere, K.-I. Imura, and T. Martin,
*Colossal spin fluctuations in a molecular quantum dot magnet with ferromagnetic electrodes*, arXiv:0803.3058 (analytical expressions for various averages and fluctuations for a simple model at zero temperature, in sequential-tunneling approximation, one or two ferromagnetic leads)**P** - W. Lee and S. Sanvito,
*Exploring the limits of the self consistent Born approximation for inelastic electronic transport*, arXiv:0804.3389 (non-equilibrium Green function formalism) - M. Lee, T. Jonckheere, and T. Martin,
*Josephson Effect through a Magnetic Metallofullerene Molecule*, arXiv:0805.0301 (endohedral fullerene, employ NRG) - F. Pistolesi, Ya. M. Blanter, and I. Martin,
*Self-consistent theory of molecular switching*, arXiv:0806.1151 - M. Galperin, M. A. Ratner, and A. Nitzan,
*Raman scattering in current carrying molecular junctions. A preliminary account*, arXiv:0808.0292 - A. Saffarzadeh,
*Electronic transport through a C*, arXiv:0808.1352 (tight-binding model for C_{60}molecular bridge: The role of single and multiple contacts_{60}, no Jahn-Teller distortion, Landauer-Büttiker approach, effect due to interference of tunneling paths) - S. Vasudevan, K. Walczak, N. Kapur, M. Neurock, and A. W. Ghosh,
*Modeling electrostatic and quantum detection of molecules*, arXiv:0808.2262 - M. Galperin, A. Nitzan, and M. A. Ratner,
*Nonequilibrium isolated molecule limit*, arXiv:0808.3115 (using Green functions for Hubbard operators)**P** - K. Kaasbjerg and K. Flensberg,
*Strong polarization-induced reduction of addition energies in single-molecule nanojunctions*, arXiv:0809.1774 - M.Crisan and I.Grosu,
*Temperature effect in the conductance of hydrogen molecule*, arXiv:0810.3120, Physica E**41**, 130 (2008) - J. P. Bergfield and C. A. Stafford,
*Many-body theory of electronic transport in single-molecule heterojunctions*, arXiv:0812.0867 (nonequilibrium Green functions, including rigorous result for the Coulomb-interaction self energy in the sequential tunneling limit) - F. Reckermann, M. Leijnse, and M. R. Wegewijs,
*Vibrational detection and control of spin in mixed-valence molecular transistors*, Phys. Rev. B**79**, 075313 (2009) - H.-Z. Lu, B. Zhou, and S.-Q. Shen,
*Spin-bias driven magnetization reversal and nondestructive detection in a single molecular magnet*, Phys. Rev. B**79**, 174419 (2009) (spin bias = different chemical potential for up and down spins) - M. A. Romero, S. C. Gomez-Carrillo, P. G. Bolcatto, and E. C. Goldberg,
*Spin fluctuation effects on the conductance through a single Pd atom contact*, J. Phys.: Condens. Matter**21**, 215602 (2009) - M. Esposito and M. Galperin,
*Transport in molecular states language: Generalized quantum master equation approach*, Phys. Rev. B**79**, 205303 (2009) (using Hubbard operators for the interacting molecular part of the Hamiltonian and Keldysh-Green functions for the Hubbard and (lead) Fermi operators, equation of motion for the expectation value of Hubbard operators is written down and approximately decoupled by inserting projection superoperators*P*, leading to a master equation that is nonlocal in time, broadening of molecular levels by coupling is here taken into account; relation to standard Markovian master equation is explained) - M. Misiorny, I. Weymann, and J. Barnas,
*Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes*, Phys. Rev. B**79**, 224420 (2009) (magnetic molecule with anisotropic spin, coupled to two ferromagnetic leads, real-time diagrammatics) - J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske,
*Phonon affected transport through molecular quantum dots*, J. Phys.: Condens. Matter**21**, 395601 (2009) (employing the Lang-Firsov transformation of the vibrons) - M. G. Schultz and F. von Oppen,
*Quantum transport through nanostructures in the singular-coupling limit*, Phys. Rev. B**80**, 033302 (2009) (perturbation theory for nearly degenerate states, full master equation vs. rate equations; title changed compared to preprint)**P** - T. L. Schmidt and A. Komnik,
*Charge transfer statistics of a molecular quantum dot with a vibrational degree of freedom*, Phys. Rev. B**80**, 041307(R) (2009) (full counting statistics, arbitrary tunneling, but weak electron-vibron coupling, see also the paper by Avriller and Levy Yeyati, below) - I. Baldea and H. Köppel,
*Critical analysis of a variational method used to describe molecular electron transport*, Phys. Rev. B**80**, 165301 (2009), also arXiv:1108.0299 (strong critique of a generalization of the variational approach of P. Delaney and J. C. Greer, said to give unphysical results in simple limiting cases); there is also a comment by Delaney and Greer and a reply by Baldea and Köppel - F. Haupt, T. Novotny, and W. Belzig,
*Phonon-assisted current noise in molecular junctions*, Phys. Rev. Lett.**103**, 136601 (2009) (non-equilibrium Green functions) - B. B. Schmidt, M. H. Hettler, and G. Schön,
*Charge correlations in polaron hopping through molecules*, arXiv:0902.3183 (chain molecules such as DNA with strong charge-deformation coupling) - L. G. Dias da Silva and E. Dagotto,
*Phonon-assisted tunneling and two-channel Kondo physics in molecular junctions*, arXiv:0902.3225**P** - R. Avriller and A. Levy Yeyati,
*Electron-phonon interaction and full counting statistics in molecular junctions*, arXiv:0903.0939 (see also the paper by Schmidt and Komnik, above) - A. Schulz, A. Zazunov, and R. Egger,
*Critical Josephson current through a bistable single-molecule junction*, arXiv:0903.2007 (*I*for a molecule with one orbital, coupled to a two-level system, at zero bias, cotunneling)_{c}**P** - O. Entin-Wohlman, Y. Imry, and A. Aharony,
*Voltage-induced singularities in transport through molecular junctions*, arXiv:0904.4385 (Keldysh formalism, consider the cases of linear response at nonzero temperature and nonzero bias at zero temperature) - B. Dong, H. Y. Fan, X. L. Lei, and N. J. M. Horing,
*Counting statistics of tunneling through a single molecule: effect of distortion and displacement of vibrational potential surface*, arXiv:0904.4737 (rate equations) - J. Loos, T. Koch, A. Alvermann, A. R. Bishop, and H. Fehske,
*Phonon affected transport through molecular quantum dots*, arXiv:0905.0248 (one-dimensional model for lead-dot-lead system, for zero bias only, approach based on equilibrium Matsubara-Green functions, addressing weak to strong electron-phonon coupling) - S. K. Shukla and S. Sanvito,
*Electron transport across electrically switchable magnetic molecules*, arXiv:0905.1607 (magnetic dimer: two sites exchange-coupled to one classical spin each, no electron-electron interaction, local spins are frozen; employ non-equilibrium Green functions) - J. Mravlje and A. Ramsak,
*Kondo effect in oscillating molecules*, arXiv:0905.2409, phys. stat. sol. (b)**246**, 994 (2009);*Electron transport through molecules in the Kondo regime: the role of molecular vibrations*, arXiv:0912.3536 - M. Galperin, K. Saito, A. V. Balatsky, and A. Nitzan,
*Cooling mechanisms in molecular conduction junctions*, arXiv:0905.2748 - E. Prodan and A. LeVee,
*Tunneling transport in devices with semiconducting leads*, arXiv:0907.4636 (mostly interested in the extension of the theory of tunneling transport to include semiconducting leads) - D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, and G. Cuniberti,
*Engineering the thermopower in semiconductor-molecule junctions: towards high thermoelectric efficiency at the nanoscale*, arXiv:0908.0438 - R. Gutierrez, R. Caetano, P. B. Woiczikowski, T. Kubar, M. Elstner,
and G. Cuniberti,
*Structural fluctuations and quantum transport through DNA molecular wires: a combined molecular dynamics and model Hamiltonian approach*, arXiv:0910.0348 (for short oligomers) - G.-Q. Li, B. D. Fainberg, A. Nitzan, P. Hänggi, and S. Kohler,
*Coherent charge transport through molecular wires: "Exciton blocking" and current from electronic excitations in the wire*, arXiv:0910.4972 (double dot, full quantum master equation with off-diagonal components treated in the rotating-wave approximation; study effects of interaction between dots, which can suppress or enhance the current) - A. Soncini and L. F. Chibotaru,
*Spintronics of noncollinear molecular magnets*, arXiv:0910.5235 (two or three local spins with non-collinear anisotropy axes; stationary-state rate equations in the sequential-tunneling limit) - S. Herzog and M. R. Wegewijs,
*Dzyaloshinskii-Moriya interaction in transport through single molecule transistors*, arXiv:0911.0571 - S. Tornow and G. Zwicknagl,
*Conductance Through a Redox System in the Coulomb Blockade Regime: Many-Particle Effects and Influence of Electronic Correlations*, arXiv:0911.5297 (employing a two-site extended Hubbard model and rate equations) - O. Entin-Wohlman, Y. Imry, and A. Aharony,
*Transport through molecular junctions with a nonequilibrium phonon distribution*, arXiv:0912.1569 (strong hybridization, Green functions) - R. Jaafar, E. M. Chudnovsky, and D. A. Garanin,
*Single magnetic molecule between conducting leads: Effect of mechanical rotations*, arXiv:0912.1882 (mean-field-type decoupling of expectation values) - A. Zazunov and R. Egger,
*Adiabatic polaron dynamics and Josephson effect in a superconducting molecular quantum dot*, arXiv:0912.2626 (a resonant level coupled to superconducting leads and to a slow oscillator) - R.-Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing,
*Thermoelectric Effect in Single-Molecule-Magnet Junctions*, Phys. Rev. Lett.**105**, 057202 (2010) (spin with easy axis coupled to local orbital, rate equations in sequential-tunneling approximation; define and calculate thermopower [Seebeck coefficient] for charge and spin)**P** - J. P. Bergfield, P. Jacquod, and C. A. Stafford,
*Coherent Destruction of Coulomb Blockade Peaks in Molecular Junctions*, arXiv:0912.4066, Phys. Rev. B**82**, 205405 (2010) (using the Green-function approach developed by two of the authors, cited above) - M. Misiorny, I. Weymann, and J. Barnas,
*Spin diode behavior in transport through single-molecule magnets*, EPL**89**, 18003 (2010) (one ferromagnetic, one nonmagnetic lead) - Z. G. Yu,
*Noninvasive electrical detection of electron spin dynamics at the N atom in N@C60*, J. Phys.: Condens. Matter**22**, 295305 (2010) (mostly interested in the nitrogen-spin dynamics, using Keldysh non-equilibrium Green functions) - B. Sothmann and J. König,
*Non-equilibrium current and noise in inelastic tunneling through a magnetic atom*, New J. Phys.**12**, 083028 (2010) - G. Begemann, S. Koller, M. Grifoni, and J. Paaske,
*Inelastic cotunneling in quantum dots and molecules with weakly broken degeneracies*, Phys. Rev. B**82**, 045316 (2010), arXiv:1003.5834 (contains a summary of problems with the*T*-matrix approach and regularization)**P** - S. Teber,
*Transport and magnetization dynamics in a superconductor/single-molecule magnet/superconductor junction*, arXiv:1002.3929 (a classical and isotropic spin [no orbitals] coupled to two leads, Keldysh formalism for electron current, also considers the spin current) - M. G. Schultz,
*Quantum transport through single-molecule junctions with orbital degeneracies*, arXiv:1004.1536 (full quantum master equation with Markov and sequential-tunneling approximations) - M. Esposito and M. Galperin,
*A self-consistent quantum master equation approach to molecular transport*, arXiv:1004.2533 (derive an approximate time-convolutionless master equation using an approximate backward propagation of the reduced density operator; suggested to be of similar accuracy as the time-nonlocal form derived earlier by the authors; tested against exact results for a non-interacting dot) - M. Leijnse, M. R. Wegewijs, and K. Flensberg,
*Non-linear thermoelectrics of molecular junctions with vibrational coupling*, arXiv:1004.4500 - O. Entin-Wohlman, Y. Imry, and A. Aharony,
*Three-terminal thermoelectric transport through a molecular junction*, arXiv:1005.3940 (Keldysh Green functions, perturbative expansion in the electron-vibration coupling, no other interaction, study what happens if the molecule is coupled to a bath at a different temperature from the leads) - R. Härtle, R. Volkovich, M. Thoss, and U. Peskin,
*Mode-selective vibrational excitation induced by nonequilibrium transport processes in single-molecule junctions*, arXiv:1006.4795 - F. Delgado and J. Fernández-Rossier,
*Spin dynamics of current driven single magnetic adatoms and molecules*, arXiv:1006.5608 (theory for STM, rate equations, spin-only model) - M. Zilly, O. Ujsaghy, and D. E. Wolf,
*Conductance of DNA molecules: Effects of decoherence and bonding*, arXiv:1007.1721 - P. S. Cornaglia, P. Roura Bas, A. A. Aligia, and C. A. Balseiro,
*Quantum Transport Through a Stretched Spin-1 Molecule*, arXiv:1007.4214 (Meir-Wingreen formula, NRG, include anisotropy) - I. Pshenichnyuk and M. Cizek,
*Motor effect in electron transport through a molecular junction with torsional vibrations*, arXiv:1007.4826 (master equation, transport coupled to an anharmonic torsional mode that can overturn) - J. P. Bergfield, J. D. Barr, and C. A. Stafford,
*The number of transmission channels through a single-molecule junction*, arXiv:1008.0035 (Green-function approach, linear-response regime, molecular many-body states treated exactly, coupling by a constant imaginary self-energy in the local Green function; number of open transmission channels is found to equal degeneracy of orbital closest to metal Fermi energy) - S. Maier, T. L. Schmidt, and A. Komnik,
*Charge transfer statistics of a molecular quantum dot with strong electron-phonon interaction*, arXiv:1010.2918 (Keldysh-Green functions, polaron transformation, strong coupling to a vibration mode) - A. Goker,
*Real time electron dynamics in an interacting vibronic molecular quantum dot*, arXiv:1010.3369 (time-dependent NCA) - R. Härtle and M. Thoss,
*Resonant Electron Transport in Single-Molecule Junctions: Vibrational Excitation, Rectification, Negative Differential Resistance and Local Cooling*, arXiv:1010.4993 (molecule coupled to a vibrational mode; quantum master equation in sequential-tunneling approximation) - M. Misiorny, I. Weymann, and J. Barnas,
*Interplay of the Kondo Effect and Spin-Polarized Transport in Magnetic Molecules, Adatoms and Quantum Dots*, arXiv:1010.6030 (taking magnetic anisotropy into account); M. Misiorny, I. Weymann, and J. Barnas,*Temperature dependence of electronic transport through molecular magnets in the Kondo regime*, arXiv:1206.6069 - M. Dey, S. K. Maiti, and S. N. Karmakar,
*Effect of Dephasing on Electron Transport in a Molecular Wire: Green's Function Approach*, arXiv:1011.2033 (Büttiker/Green-function approach) - A. Nocera, C. A. Perroni, V. Marigliano Ramaglia, and V. Cataudella,
*Stochastic dynamics for a single vibrational mode in molecular junctions*, arXiv:1011.4461 (derive a Langevin equation for the vibrational dynamics) - H.-B. Xue, Y.-H. Nie, Z.-J. Li, and J.-Q. Liang,
*Effects of magnetic field and transverse anisotropy on full counting statistics in single-molecule magnet*, arXiv:1011.5546 (full counting statistics, sequential-tunneling approximation) - R. C. Monreal, F. Flores, and A. Martin-Rodero,
*Nonequilibrium transport in molecular junctions with strong electron-phonon interactions*, arXiv:1012.2015 (Keldysh formalism) - T. Markussen, J. Chen, and K. S. Thygesen,
*Improving Transition Voltage Spectroscopy of Molecular Junctions*, arXiv:1012.3650 (how to extract molecular-level energies from*I-V*characteristics) - M. Leijnse, W. Sun, M. Brøndsted Nielsen, P.
Hedegård, and K. Flensberg,
*Interaction-induced negative differential resistance in asymmetric molecular junctions*, arXiv:1012.3856 (master equation and quantum chemistry calculations) - A. Ueda, O. Entin-Wohlman, and A. Aharony,
*Effects of coupling to vibrational modes on the ac conductance of molecular junctions*, arXiv:1101.4440 (linear response, Keldysh formalism) - R. Härtle and M. Thoss,
*Vibrational Instabilities in Resonant Electron Transport through Single-Molecule Junctions*, arXiv:1102.0840 (2nd-order Markovian master equation; run-away of vibrational quantum number) - T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G.-M.
Rignanese,
*Transport properties of molecular junctions from many-body perturbation theory*, arXiv:1102.1880 (Landauer formula and perturbation theory to include many-body effects) - F. May, M. R. Wegewijs, and W. Hofstetter,
*Interaction of spin and vibrations in transport through single-molecule magnets*, arXiv:1102.2798 (NRG, the spectral function is calculated at zero bias)**P** - R. Härtle, M. Butzin, O. Rubio-Pons, and M. Thoss,
*Quantum Interference and Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current*, arXiv:1102.4190 (... by suppressing electronic interference) - M. Misiorny, I. Weymann, and J. Barnas,
*The Influence of Magnetic Anisotropy on the Kondo Effect and Spin-Polarized Transport through Magnetic Molecules, Adatoms and Quantum Dots*, arXiv:1103.1128 - Y.-L. Lo, S.-J. Sun, and Y.-J. Kao,
*Length and temperature dependent crossover of charge transport across molecular junctions*, arXiv:1103.1708 (NEGF) - D. Segal, A. J. Millis, and D. R. Reichman,
*Nonequilibrium transport in quantum impurity models: Exact path integral simulations*, arXiv:1103.1867 (contains discussion of*iterative influence-functional path integral method*applied to transport through a quantum dot, it decouples the interactions on the dot via a Hubbard-Statonovich transformation and evaluate path integrals numerically) - F. Delgado and J. Fernández-Rossier,
*Cotunneling theory of inelastic STM spin spectroscopy*, arXiv:1103.3676 (map cotunneling onto an additional term in an effective Hamiltonian, which is then treated in leading order in the master equation) - H. Wang and M. Thoss,
*Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions*, arXiv:1103.4945 (using an advanced time-dependent Hartree approach, see also references);*Numerically exact, time-dependent study of correlated electron transport in model molecular junctions*, arXiv:1301.4489 - K. Kaasbjerg and K. Flensberg,
*Image charge effects in single-molecule junctions: Breaking of symmetries and NDR in a benzene SET*, arXiv:1104.2398 (explain how the image charge leads to a blocking state; rate equations in sequential-tunneling approximation) - D. Kast, L. Kecke, and J. Ankerhold,
*Charge transfer through single molecule contacts: How reliable are rate descriptions?*, arXiv:1104.4903 (conclude that they are rather reliable, even where one does not expect this; mostly interested in coupling to vibrations) - T. Koch, J. Loos, A. Alvermann, and H. Fehske,
*Non-equilibrium transport through molecular junctions in the quantum regime*, arXiv:1105.0576 (Green-function approach, no Hubbard-*U*, variational Lang-Firsov transformation to treat electron-vibron interaction) - L. Livadaru, J. Pitters, M. Taucer, and R. A. Wolkow,
*Theory of STM Imaging of Silicon Dangling Bonds on a H:Si(001) Surface: a Complex 3D Playground for Single Electron Dynamics*, arXiv:1105.2332 (theory for observed halos based on non-equilibrium transport) - O. Entin-Wohlman and A. Aharony,
*Three-terminal thermoelectric transport through a molecule placed on an Aharonov-Bohm ring*, arXiv:1105.3994 - R. Volkovich, R. Härtle, M. Thoss, and U. Peskin,
*Bias-Controlled Selective Excitation of Vibrational Modes in Molecular Junctions: A Route Towards Mode-Selective Chemistry*, arXiv:1106.0170 - A. C. Seridonio, F. S. Orahcio, F. M. Souza, and M. S. Figueira,
*Spin-resolved STM for a Kondo adatom in a ferromagnetic island*, arXiv:1106.2853 - I. A. Sadovskyy, D. Chevallier, T. Jonckheere, M. Lee, S. Kawabata, and
T. Martin,
*Josephson effect through an anisotropic magnetic molecule*, arXiv:1106.4193**P** - J. Ren, J.-X. Zhu, J. E. Gubernatis, C. Wang, and B. Li,
*Thermoelectric transport with arbitrary electron-phonon coupling and electron-electron interaction in molecular junctions*, arXiv:1106.5208 (NEGF) - F. Zhan, S. Denisov, and P. Hänggi,
*Electronic Heat Transport Across a Molecular Wire: Power Spectrum of Heat Fluctuations*, arXiv:1107.3434 (NEGF) - J. P. Bergfield, J. D. Barr, and C. A. Stafford,
*Transmission eigenvalue distributions in highly-conductive molecular junctions*, arXiv:1107.5854 (essentially Meir-Wingreen-Jauho approach, although not called that; use additional single-resonance approximation; model system is benzene between Pt electrodes; the eigenvalues mentioned in title are the ones of the coupling matrix Γ) - A. Yar, A. Donarini, S. Koller, and M. Grifoni,
*Dynamical symmetry breaking in vibration-assisted transport through nanostructures*, arXiv:1108.0814 - S. Kruchinin and T. Pruschke,
*Thermopower for a molecule with vibrational degrees of freedom*, arXiv:1108.4526 (one spin-less electronic orbital coupled to a vibron, only two states of the harmonic-oscillator ladder are taken into account, Meir-Wingreen formula using the local density of states in the limit of zero coupling); V. N. Ermakov, S. P. Kruchinin, H. T. Kim, and T. Pruschke,*Thermoelectric properties of molecular nanostructures*, arXiv:1109.0365 (extension, still without interactions) - D. Rai, O. Hod, and A. Nitzan,
*Magnetic Fields Effects on the Electronic Conduction Properties of Molecular Ring Structures*, arXiv:1109.0619 (Aharonov-Bohm effect in molecular rings, dephasing, no interactions, Landauer approach) - A. A. Dzhioev and D. S. Kosov,
*Solvent induced current-voltage hysteresis and negative differential resistance in molecular junctions*, arXiv:1109.2046 (NEGF, effect of solvent) - R. Gutierrez, E. Diaz, R. Naaman, and G. Cuniberti,
*Spin selective transport through helical molecular systems*, arXiv:1110.0354 - N. Bode, L. Arrachea, G. Lozano, T. S. Nunner, and F. von Oppen,
*Current-induced switching in transport through anisotropic magnetic molecules*, arXiv:1110.4270 (assuming slow spin dynamics, derive Langevin/Landau-Lifshitz-Gilbert equation for the spin) - L. Kecke and J. Ankerhold,
*Voltage induced conformational changes and current control in charge transfer through molecules*, arXiv:1110.5505 (electrons coupled to a slow [heavy] torsion mode of the molecule, master equation) - H. Ness and L. K. Dash,
*Non-equilibrium quantum transport in fully interacting single-molecule nanojunctions*, arXiv:1112.1878 (NEGF for systems with interactions in the molecule, in the leads, and spanning molecule and leads) - D. Bohr and P. Schmitteckert,
*The dark side of benzene: interference vs. interaction*, arXiv:1112.4585 (linear response, employ the DMRG) - D. A. Lovey and R. H. Romero,
*Quantum interference through gated single-molecule junctions*, Chem. Phys. Lett.**530**, 86 (2012) (non-interacting tight-binding model, Landauer formula) - I. Weymann, J. Barnas, and S. Krompiewski,
*Manifestation of the shape and edge effects in spin-resolved transport through graphene quantum dots*, Phys. Rev. B**85**, 205306 (2012) - S. Sobczyk, A. Donarini, and M. Grifoni,
*Theory of STM junctions for π-conjugated molecules on thin insulating films*, Phys. Rev. B**85**, 205408 (2012) (quantum master equation, with spatial resolution, applied to benzene)**P**; A. Donarini, S. Sobczyk, B. Siegert, and M. Grifoni,*Topographical fingerprints of many-body interference blocking in STM junctions on thin insulating films*, Phys. Rev. B**86**, 155451 (2012) (applied to Cu phthalocyanine)**P** - F. R. Renani and G. Kirczenow,
*Tight-binding model of Mn*, Phys. Rev. B_{12}single-molecule magnets: Electronic and magnetic structure and transport properties**85**, 245415 (2012) (extended Hückel model plus spin-orbit coupling, transport with Landauer formula, for the specific ligands considered HOMO predicted on the core, LUMO etc. on the ligands, thus LUMO etc. should not show Coulomb blockade) - L. Tosi, P. Roura-Bas, and A. A. Aligia,
*Non-equilibrium conductance through a benzene molecule in the Kondo regime*, J. Phys.: Condens. Matter**24**, 365301 (2012) - A. Donarini, A. Yar, and M. Grifoni,
*Vibration induced memory effects and switching in ac-driven molecular nanojunctions*, Eur. Phys. J. B**85**, 316 (2012) (polaron shift, Franck-Condon blockade)**P** - B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekathöfer,
*Time-Dependent View of Sequential Transport through Molecules with Rapidly Fluctuating Bridges*, Phys. Rev. Lett.**109**, 176802 (2012) (noninteracting electrons, NEGF) - A. Valli, G. Sangiovanni, A. Toschi, and K. Held,
*Correlation effects in transport properties of interacting nanostructures*, Phys. Rev. B**86**, 115418 (2012) (DMFT, applied to benzene-ring, only linear response, DMFT is found to be valid unless hybridization is weak) - G. Li, M. S. Shishodia, B. D. Fainberg, A. Nitzan, and M. A. Ratner,
*Compensation of Coulomb blocking and energy transfer in the current voltage characteristic of molecular conduction junctions*, arXiv:1201.0245 - B. D. Fainberg and T. Seideman,
*Optically induced current in molecular conduction nanojunctions with intrinsic semiconductor contacts*, arXiv:1201.4682 - R. Hützen, S. Weiss, M. Thorwart, and R. Egger,
*Iterative summation of path integrals for nonequilibrium molecular quantum transport*, arXiv:1201.6466 (a spinless fermionic orbital, thus without fermionic interaction, with Fröhlich coupling to a single harmonic oscillator, approach works in the quantum-coherent [open] situation) - V. Balachandran, R. Bosisio, and G. Benenti,
*Validity of Wiedemann Franz law in small molecular wires*, arXiv:1202.5109 - L. Simine and D. Segal,
*Vibrational cooling, heating, and instability in molecular conducting junctions: Full counting statistics analysis*, arXiv:1203.3910 - K. I. Wysokinski,
*Thermal transport of molecular junctions in the pair tunneling regime*, arXiv:1204.3059 - H. Xie, Q. Wang, H. Jiao, and J.-Q. Liang,
*Tunneling anisotropic magnetoresistance in single-molecule magnet junctions*, arXiv:1205.3916 (importance of angle between easy axis and magnetization of electrode) - G. Schaller, T. Krause, T. Brandes, and M. Esposito,
*Fluctuation theorem for a single electron transistor strongly coupled to vibrations*, arXiv:1206.3960 (master equation, full counting statistics, one or more vibrational modes, Franck-Condon blockade) - K. F. Albrecht, H. Wang, L. Muehlbacher, M. Thoss, and A. Komnik,
*Bistability signatures in nonequilibrium charge transport through molecular quantum dots*, arXiv:1206.4464 (non-interacting orbital strongly coupled to a vibrational mode, dependence of current on the initial state is long lived, are careful not to claim a dependence of the true stationary state) - C. Stevanato, M. Leijnse, K. Flensberg, and J. Paaske,
*Finite-bias conductance anomalies at a singlet-triplet crossing*, arXiv:1207.3020 (full master equation including all fourth-order terms, effect of crossing between singlet and triptlet ground state inside a Coulomb diamond, e.g., for double dot) - G. Gonzalez and M. N. Leuenberger,
*MQC-Fano effect in single molecule magnet transistors*, arXiv:1208.0963 (MQC = magnetic quantum coherence, due to spin tunneling through anisotropy barrier) - H. Ishida and A. Liebsch,
*Coulomb blockade and Kondo effect in the electronic structure of Hubbard molecules connected to metallic leads: a finite-temperature*, arXiv:1208.6225 (linear response, leads modeled by finite clusters, exact diagonalization, Green-function approach) - R. Härtle, M. Butzin, and M. Thoss,
*Vibrationally Induced Decoherence in Single-Molecule Junctions*, arXiv:1209.5619 (Lang-Firsov transformation, NEGF) - H. Ness and L. K. Dash,
*Non-equilibrium transport with self-consistent renormalised contacts for a single-molecule nanodevice with electron-vibron interaction*, arXiv:1210.1368, Phys. Rev. B (NEGF);*Non-equilibrium renormalised contacts for transport in nanodevices with interaction: a quasi-particle approach*, arXiv:1210.1372 - M. Leijnse,
*Interaction effects in transport through molecular monolayers*, arXiv:1210.2843 (normal transport through layer with nearest-neighbor Coulomb interaction, one spinless orbital per site, sequential tunneling, nonlinear master equation)**P** - D. H. Santamore, N. Lambert, and F. Nori,
*Vibrationally-mediated molecular transistors*, arXiv:1210.7098 - M. B. Tagani and H. R. Soleimani,
*Photon-phonon-assisted thermoelectric effects in the molecular devices*, arXiv:1210.7322 - M. Knap, E. Arrigoni, and W. von der Linden,
*Phonon mediated correlation effects on the transport properties of a benzene molecular transistor*, arXiv:1211.1384 (electron-phonon coupling: electron hopping couples to six vibrational eigenmodes of benzene, focus on the lowest, i.e., breathing mode, no electron-electron interaction [*U*]; cluster perturbation theory and Meir-Wingreen-type current formula) - M. Filipovic, C. Holmqvist, F. Haupt, and W. Belzig,
*Spin transport and tunable Gilbert damping in a single-molecule magnet junction*, arXiv:1211.3611 (electronic orbital without Hubbard interaction coupled to time-dependent local magnetic field [modeling a large precessing spin], Keldysh NEGF formalism) - A. A. Dzhioev, D. S. Kosov, and F. von Oppen,
*Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents*, arXiv:1212.2010 (Keldysh NEGF) - R. A. Molina, P. Schmitteckert, D. Weinmann, R. A. Jalabert, and P.
Jacquod,
*Mesoscopic behavior of the transmission phase through confined correlated electronic systems*, arXiv:1212.2114 (linear response, "embedding method") - M. Imran,
*Electron transport through a diatomic molecule*, arXiv:1212.3775 (noninteracting, two-site model) - G. D. Scott, D. Natelson, S. Kirchner, and E. Muñoz,
*Transport Characterization of Kondo-Correlated Single Molecule Devices*, arXiv:1301.2168 - L. Kecke and J. Ankerhold,
*Charge transfer through molecular junctions within Redfield theory: subtleties and pitfalls*, arXiv:1301.2422**P** - A. Jovchev and F. Anders,
*Influence of vibrational modes on the quantum transport through a nano-device*, arXiv:1302.0184 - M. Misiorny and J. Barnas,
*Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching*, arXiv:1302.1074 - J. I. Romero and E. R. Mucciolo,
*Berry phase interference and single-electronic transport in a three-ion magnetic molecule*, arXiv:1302.4768 (magnetic-nonmagnetic-magnetic ions, rate equations, stationary state, diabolical [degeneracy] points) - W. R. French, C. R. Iacovella, I. Rungger, A. Melo Souza, S. Sanvito, and
P. T. Cummings,
*Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions*, arXiv:1303.0315 (molecular-dynamics simulations with semiempirical tight-binding potentials, transport calculations using static DFT [SMEAGOL]) - Y. Dubi,
*The effect of fluctuations - thermal and otherwise - on the temperature dependence of thermopower in aromatic chain single-molecule junctions*, arXiv:1303.0488 (linear response, tight-binding model based on DFT, NEGF) - E. Eidelstein, D. Goberman, and A. Schiller,
*Crossover from adiabatic to antiadiabatic phonon-assisted tunneling in single-molecule transistors*, arXiv:1303.7161 (single level without Hubbard interaction coupled to vibrational mode, equilibrium [single reservoir] and linear response transport, NRG) - R. Härtle, U. Peskin, and M. Thoss,
*Vibrationally coupled electron transport in single-molecule junctions: The importance of electron-hole pair creation processes*, arXiv:1304.4846 (NEGF) - H. Xie, Q. Wang, H.-B. Xue, H.-J. Jiao, and J.-Q. Liang,
*Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet*, arXiv:1304.6044 (standard model, rate equations including cotunneling used to find the stationary state, study effect of additional spin relaxation)**P** - P. Stadler, C. Holmqvist, and W. Belzig,
*Josephson current through a quantum dot coupled to a molecular magnet*, arXiv:1304.8030 (quantum dot with one orbital exchange coupled to a classical spin precessing in a constant magnetic field, i.e., rotating Zeeman field; NEGF)**P** - P. Roura-Bas, L. Tosi, and A. A. Aligia,
*Nonequilibrium transport through magnetic vibrating molecules*, arXiv:1305.3263 (Anderson impurity with infinite*U*coupled to vibrational mode, no local spin; Keldysh NEGF, Kondo peak is DOS vs. frequency shows vibron satellites) - D. A. Lovey and R. H. Romero,
*Quantum transport through single and multilayer icosahedral fullerenes*, arXiv:1305.6299 (tight-biding model, Landauer approach) - A. Migliore and A. Nitzan,
*Nonlinear charge transport in redox molecular junctions: a Marcus perspective*, arXiv:1306.4797, ACS Nano**5**, 6669 (2011) (detailed study of sequential tunneling rates as they appear in rate equations and their effects on transport);*Irreversibility and hysteresis in redox molecular conduction junctions*, arXiv:1306.4812, J. Am. Chem. Soc. (memory effects, dependence on sweep rate); A. J. White, A. Migliore, M. Galperin, and A. Nitzan,*Quantum Transport With Two Interacting Conduction Channels*, arXiv:1306.4855, J. Chem. Phys.**138**, 174111 (2013) (for example the redox molecules) - M. Galperin and A. Nitzan,
*Cooperative effects in inelastic tunneling*, arXiv:1306.4858 - B. Dong, G. H. Ding, and X. L. Lei,
*Full counting statistics of a single-molecular quantum dot*, arXiv:1307.0946 (with strong coupling to a vibrational mode; NEGF with Lang-Firsov transformation) - E. Perfetto and G. Stefanucci,
*Screening-induced negative differential conductance in the Franck-Condon blockade regime*, arXiv:1307.7527 (using bosonization) - M. Nuss, W. von der Linden, and E. Arrigoni,
*Effects of electronic correlations and magnetic field on a molecular ring out of equilibrium*, arXiv:1307.7530 (steady-state cluster perturbation theory; benzene model, leads are modeled as 1D chains and are, oddly, said to have semicircular density of states) - J. Fransson, J. Ren, and J.-X. Zhu,
*Electrical and Thermal Control of Magnetic Exchange Interactions*, Phys. Rev. Lett.**113**, 257201 (2014) (discuss various forms of indirect magnetic coupling mediated by electronic leads) - S. Ajisaka, B. Zunkovic, and Y. Dubi,
*The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium*, Sci. Rep.**5**, 8312 (2015) (Lindblad master equation, including coupling to photons and vibrons)

- F. Evers, F. Weigend, and M. Koentopp,
*The conductance of molecular wires and DFT based transport calculations*, Phys. Rev. B**69**, 235411 (2004) (why DFT is bad for weak coupling) - N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra,
*Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems*, Phys. Rev. Lett.**94**, 186810 (2005) (TDCDFT for a nanoscale constriction, then applied to a molecular junction; note comment) - C. Toher, A. Filippetti, S. Sanvito, and K. Burke,
*Self-Interaction Errors in Density-Functional Calculations of Electronic Transport*, Phys. Rev. Lett.**95**, 146402 (2005) - R. Zikic, P. S. Krstic, X.-G. Zhang, M. Fuentes-Cabrera, J. Wells, and X.
Zhao,
*Characterization of the tunneling conductance across DNA bases*, Phys. Rev. E**74**, 011919 (2006) (single nucleotides between gold electrodes, essentially Landauer picture); J. Lagerqvist, M. Zwolak, and M. Di Ventra,*Comment on "Characterization of the tunneling conductance across DNA bases"*, cond-mat/0612493, and references therein - V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge,
T. Bredow, and I. Mertig,
*Organometallic Benzene-Vanadium Wire: A One-Dimensional Half-Metallic Ferromagnet*, Phys. Rev. Lett.**97**, 097201 (2006)**P** - T. Ono and K. Hirose,
*First-Principles Study on Electron-Conduction Properties of C*, cond-mat/0606541_{60}Chains - C. Benesh, M. Thoss, W. Domcke, and M. Cizek,
*Vibronic effects on resonant electron conduction through single molecule junctions*, cond-mat/0606756, Chem. Phys. Lett. - X.-Q. Li and Y. Yan,
*Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nano-electronic devices*, cond-mat/0606788 - C. J. Lambert, I. M. Grace, and T. Papadopolous,
*Controlled electron transport through single molecules*, cond-mat/0609130 (for a specific class of molecular wires) - F. Evers and A. Arnold,
*Molecular Conductance from Ab Initio Calculations: Self Energies and Absorbing Boundary Conditions*, cond-mat/0611401 - T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho,
*Inelastic transport theory from first-principles: methodology and applications for nanoscale devices*, cond-mat/0611562 - X.-Q. Li, Y.-J. Yan,
*Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices*, Phys. Rev. B**75**, 075114 (2007) (combines the master equation for the reduced many-body density operator, in the sequential-tunneling approximation, with TDDFT to reduce the many-particle problem on the dot to solving time-dependent Kohn-Sham equations) - E. Prodan and R. Car,
*DC conductance of molecular wires*, Phys. Rev. B**76**, 115102 (2007) - N. Sai, N. Bushong, R. Hatcher, and M. Di Ventra,
*Microscopic durrent dynamics in nanoscale junctions*, Phys. Rev. B**75**, 115410 (2007) - Z. Li and D. S. Kosov,
*Nature of well-defined conductance of amine anchored molecular junctions*, cond-mat/0702507 - J. K. Viljas, F. Pauly, and J. C. Cuevas,
*Photoconductance of organic single-molecule contacts*, arXiv:0704.0408 - M. del Valle, R. Gutierrez, C. Tejedor, and G. Cuniberti,
*Tuning the conductance of a molecular switch*, arXiv:0705.0527 (Landauer theory) - P. Bokes, J. Jung, and R. W. Godby,
*Ab-initio formulation of the 4-point conductance of interacting electronic systems*, arXiv:0705.1568 (TDDFT) - F. Pauly, J. K. Viljas, J. C. Cuevas, and G. Schön,
*Tilt-angle landscapes and temperature dependence of the conductance in biphenyl-dithiol single-molecule junctions*, arXiv:0705.3285 (DFT and Landauer formula) - S.-H. Ke, H. U. Baranger, and W. Yang,
*Electron transport through single conjugated organic molecules: Basis set effects in ab initio calculations*, arXiv:0705.3409 (also DFT and Landauer formula) - D. M. Cardamone and G. Kirczenow,
*Single-Molecule Device Prototypes for Protein-Based Nanoelectronics: Negative Differential Resistance and Current Rectification in Oligopeptides*, arXiv:0708.1041 (semi-empirical Hamiltonian, Landauer formula) - W. Y. Kim and K. S. Kim,
*Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the non-equilibrium Green function method at the level of first principles theory*, arXiv:0708.2459, J. Comp. Chem.**29**, 1073 (2008) (DFT + Landauer formula) - S. E. Baltazar, M. De Menech, U. Saalmann, A. H. Romero, and M. E.
Garcia,
*Negative differential resistance of Styrene on an ideal Si[111] surface: dependence of the I-V characteristics on geometry, surface doping and shape of the STM-tip*, arXiv:0708.2834 (LSDA, Landauer formula) - M. Galperin and S. Tretiak,
*Linear optical response of current-carrying molecular junction: A NEGF-TDDFT approach*, arXiv:0712.1166 - A. Saffarzadeh,
*Tunnel magnetoresistance of a single-molecule junction*, J. Appl. Phys.**104**, 123715 (2008) (NEGF and Landauer-Büttiker formula for C_{60}with ferromagnetic leads) - D. J. Mowbray, G. Jones, and K. S. Thygesen,
*Influence of Functional Groups on Charge Transport in Molecular Junctions*, arXiv:0802.2069 (static DFT + NEGF to obtain transmission coefficient, Landauer formula, model STM tip [Au]-molecule-surface [Au], strong tunneling regime) - Yu. V. Pershin, Y. Dubi, and M. Di Ventra,
*Effective single-particle order-N scheme for the dynamics of open non-interacting many-body systems*, arXiv:0803.3216 (mapping of many-particle problem onto an effective single-particle one in the context of TDCDFT) - R. Pati, M. McClain, and A. Bandyopadhyay,
*Origin of negative differential resistance in a strongly coupled single molecule-metal junction device*, arXiv:0803.3342 - R. Stadler, V. Geskin, and J. Cornil,
*Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory*, arXiv:0803.3886 (static DFT and NEGF to calculate transmission coefficients, claims to obtain good description of Coulomb blockade regime);*Screening effects in a density functional theory based description of molecular junctions in the Coulomb blockade regime*, arXiv:0811.3114 (application of previous idea) - K. Tao, V. S. Stepanyuk, P. Bruno, D. I. Bazhanov, V. V. Maslyuk, M.
Brandbyge, and I. Mertig,
*Manipulating magnetism and conductance of an adatom-molecule junction on metal surfaces: ab initio study*, arXiv:0804.3337 (employing static LDA in the GGA and non-equilibrium Green functions) - S.-H. Ke, W. Yang, and H. U. Baranger,
*Quantum Interference Controlled Molecular Electronics*, arXiv:0806.3593, Nano Lett.**8**, 3257 (2008) (static LDA and also HF, combined with Landauer formula) - F. Pauly, J. K. Viljas, U. Huniar, M. Häfner, S. Wohlthat, M.
Bürkle,
J. C. Cuevas, and G. Schön,
*Cluster-based density-functional approach to quantum transport through molecular and atomic contacts*, arXiv:0806.4173 (static GGA plus Landauer-Büttiker theory) - V. M. Garcia-Suarez and C. J. Lambert,
*Tailoring the Fermi level of the leads in molecular-electronic devices*, arXiv:0807.4032 (static DFT and NEGF to obtain transmission coefficients) - P. Hyldgaard,
*Density-functional theory of nonequilibrium tunneling: A Lippmann-Schwinger single-particle scheme*, arXiv:0807.4555 (promising alternative to static DFT plus Landauer-Büttiker formalism and also to TD-DFT)**P** - H. He, R. Pandey, and S. P. Karna,
*Electronic conduction in a three-terminal molecular transistor*, arXiv:0809.3796 (static DFT plus Landauer-Büttiker formula) - J. Ferrer and V. M. Garcia-Suarez,
*Tuning the conductance of molecular junctions: transparent versus tunneling regimes*, arXiv:0810.1863 (static DFT and Landauer formalism) - G. Vignale and M. Di Ventra,
*Incompleteness of the Landauer Formula for Electronic Transport*, arXiv:0810.2857 (viscosity of the electron liquid is important, develop formalism based on TDCDFT) - C. M. Finch, V. M. García-Suárez, and C. J. Lambert,
*Giant thermopower and figure of merit in single-molecule devices*, arXiv:0811.3029 (use static DFT and non-equilibrium Green-function method [SIESTA code], find strong effect of Fano resonances on heat transport) - Y.-S. Liu and Y.-C. Chen,
*Thermoelectricity of Molecular Tunneling Junctions*, arXiv:0812.0400 (linear response, Landauer approach) - L. Michalak, C. M. Canali, M. R. Pederson, M. Paulsson, and V. G. Benza,
*Theory of tunneling spectroscopy in a Mn*, arXiv:0812.1058 (using a many-body/spin Hamiltonian based on ab-initio calculations, and rate equations)_{12}single-electron transistor by DFT methods - M. J. Verstraete, P. Bokes, and R. W. Godby,
*First-Principles conductance of nanoscale junctions from the polarizability of finite systems*, arXiv:0812.4205 - R. Zhang, G. Ma, R. Li, Z. Qian, Z. Shen, X. Zhao, S. Hou, and
S. Sanvito,
*Effects of spin-orbit coupling on the conductance of molecules contacted with gold electrodes*, J. Phys.: Condens. Matter**21**, 335301 (2009) (spin-orbit coupling in the leads, not in the molecule) - S. Barraza-Lopez, K. Park, V. Garcia-Suarez, and
J. Ferrer,
*Spin-filtering effect in the transport through a single-molecule magnet Mn*, arXiv:0901.4271 (static GGA and GGA+U, non-equilibrium Green functions to calculate the transmission coefficients, and Landauer-Büttiker formula)_{12}bridged between metallic electrodes - Z. Zhou and S.-I Chu,
*Description of electron transport dynamics in molecular devices: A time-dependent density functional theoretical approach in momentum space makes it simple*, arXiv:0902.1489 - C. D. Pemmaraju, I. Rungger, and S. Sanvito,
*Magnetic state electrical readout of Mn12 molecules*, arXiv:0905.0281 - D. Nozaki and G. Cuniberti,
*Silicon-based molecular switch junctions*, arXiv:0907.0155 - T. Ozaki, K. Nishio, and H. Kino,
*Efficient implementation of the nonequilibrium Green function method for electronic transport calculations*, arXiv:0908.4142 (using static DFT) - K. K. Saha, W. Lu, J. Bernholc, and V. Meunier,
*Electron transport in multi-terminal molecular device*, arXiv:0908.4346 (DFT and Keldysh-NEGF, essentially Landauer approach) - S. Barraza-Lopez, K. Park, V.r Garcia-Suarez, and J. Ferrer,
*First-principles study of electron transport through the single-molecule magnet Mn12*, arXiv:0909.3672 (static DFT/GGA including spin-orbit coupling, Landauer formula) - T. Kostyrko, V. M. Garcia-Suarez, C. J. Lambert, and B. R. Bulka,
*Current rectification in molecular junctions produced by local potential fields*, Phys. Rev. B**81**, 085308 (2010) (using SMEAGOL: static DFT and NEGF) - V. V. Maslyuk, S. Achilles, and I. Mertig,
*Spin-polarized transport and thermopower of organometallic nanocontacts*, Sol. State Commun.**150**, 505 (2010) (static GGA + NEGF for short benzene-vanadium wires) - X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou,
*Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes*, J. Chem. Phys.**132**, 054703 (2010) - S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross,
*Dynamical Coulomb Blockade and the Derivative Discontinuity of Time-Dependent Density Functional Theory*, Phys. Rev. Lett.**104**, 236801 (2010) (Coulomb blockade is associated with undamped oscillations, not a stationary state, if the tunneling is suddenly instead of adiabatically switched on); see also Viewpoint: C. A. Ullrich,*A not-so-steady state*, Physics**3**, 47 (2010) - T. Olsen and J. Schiøtz,
*Vibrationally Mediated Control of Single Electron Transmission in Weakly Coupled Molecule-Metal Junctions*, arXiv:1001.0455 (calculate transmission coefficients, idea is that a single electron can tunnel through the molecule if the molecule was prepared in the first excited vibrational state, the vibration is deexcited, providing the energy required for the tunneling) - I. Rungger, X. Chen, U. Schwingenschlögl, and S. Sanvito,
*Finite-bias electronic transport of molecules in water solution*, arXiv:1002.0226 (NEGF based on SIC-LDA, calculate transmission coefficient at zero and nonzero bias voltage) - S.-H. Ke, R. Liu, W. Yang, and H. U. Baranger,
*Time-Dependent Transport Through Molecular Junctions*, arXiv:1002.1441 (static GGA and NEGF approach, focus on dynamics) - K. Park, S. Barraza-Lopez, V. M. Garcia-Suarez, and J. Ferrer,
*Effects of bonding type and interface geometry on coherent transport through the single-molecule magnet Mn12*, arXiv:1003.2750 (static GGA and NEGF approach, SMEAGOL and SIESTA codes) - R. Stadler,
*Conformation dependence of charge transfer and level alignment in nitrobenzene junctions with pyridyl anchor groups*, arXiv:1004.1323 - J. Chen, T. Markussen, and K. S. Thygesen,
*Quantifying Transition Voltage Spectroscopy of Molecular Junctions*, arXiv:1005.3937 (DFT and NEGF calculation is used to elucidate the method of transition voltage spectroscopy) - K. Stokbro,
*First-principles modelling of molecular single-electron transistors*, arXiv:1006.0082 (DFT used to calculate the charging energy)**P** - C. D. Pemmaraju, I. Rungger, X. Chen, A. R. Rocha, and S. Sanvito,
*Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands*, arXiv:1007.0035 (DFT with self-interaction correction and NEGF) - D. Jacob, K. Haule, and G. Kotliar,
*Dynamical Mean-Field Theory for Molecular Electronics: Electronic Structure and Transport Properties*, arXiv:1009.0523 (static LDA and DMFT with one-crossing approximation as impurity solver) - S. Schenk, P. Schwab, M. Dzierzawa, and U. Eckern,
*Density functional theory for a model quantum dot: Beyond the local-density approximation*, arXiv:1009.3416 (various regimes, also stress that the linear conductance cannot, in general, be obtained from static DFT) - F. Mirjani and J. M. Thijssen,
*DFT-based many-body analysis of electron transport through molecules*, arXiv:1009.5312 (extract parameters of Hubbard-type models from LSDA ground-state energies with constrained charge and spin)**P** - Y. Xing, B. Wang, and J. Wang,
*First-principles investigation of dynamical properties of molecular devices under a steplike pulse*, arXiv:1011.2625 (NEGF) - R. E. Sparks, V. M. García-Suárez, D. Zs. Manrique1, and
C. J. Lambert,
*Quantum Interference in Single Molecule Electronic Systems*, Phys. Rev. B**83**, 075437 (2011) - T. Ono, S. Tsukamoto, Y. Egami, and Y. Fujimoto,
*Real-space calculations for electron transport properties of nanostructures*, J. Phys.: Condens. Matter**23**, 394203 (2011) - M. Karolak, D. Jacob, and A. I. Lichtenstein,
*Orbital Kondo Effect in Cobalt-Benzene Sandwich Molecules*, Phys. Rev. Lett.**107**, 146604 (2011) (static DFT + one-crossing approximation + Hubbard and Hund's-first-rule interactions, Green-function approach to obtain Meir-Wingreen-type transmission function) - G. Stefanucci and S. Kurth,
*Towards a Description of the Kondo Effect Using Time-Dependent Density-Functional Theory*, Phys. Rev. Lett.**107**, 216401 (2011) - D. Toroz, M. Rontani, and S. Corni,
*Visualizing electron correlation by means of ab-initio scanning tunneling spectroscopy images of single molecules*, arXiv:1101.2517, J. Chem. Phys.**134**, 024104 (2011) (quantum chemistry) - V. M. Garcíia-Suárez and C. J. Lambert,
*First-principles scheme for spectral adjustment in nanoscale transport*, arXiv:1101.2778 - F. D. Novaes, M. Cobian, A. Garcia, P. Ordejon, H. Ueba, and N. Lorente,
*Negative differential resistance in scanning tunneling microscopy: simulations on C*, arXiv:1101.3714 (static DFT and Landauer formula, Transiesta package)_{60}-based molecular overlayers - Y. Wang, C.-Y. Yam, G. H. Chen, T. Frauenheim, and T. A. Niehaus,
*An efficient method for quantum transport simulations in the time domain*, arXiv:1101.5929 (TDDFT) - M. Polok, D. V. Fedorov, A. Bagrets, P. Zahn, and I. Mertig,
*Evaluation of conduction eigenchannels of an adatom probed by an STM tip*, arXiv:1103.1162 (DFT/KKR and Kubo formula for linear response, conductance is decomposed into channels in the spirit of Landauer theory) - J. Prasongkit, A. Grigoriev, G. Wendin, and R. Ahuja,
*Interference effects in phtalocyanine controlled by H-H tautomerization: a potential two-terminal unimolecular electronic switch*, arXiv:1104.1441 (static DFT and NEGF: TranSIESTA code) - M. Karolak, D. Jacob, and A. I. Lichtenstein,
*Orbital Kondo effect in Cobalt-Benzene sandwich molecules*, arXiv:1105.4803 (LDA+OCA method, [OCA: one-crossing approximation]) - J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford,
*Kondo effect given exactly by density functional theory*, arXiv:1106.3104 (linear response is described exactly if the exact Kohn-Sham potential of static DFT is used, which here can be obtained from the Bethe ansatz; this holds although the spectral function of static DFT completely misses the Kondo peak; overlaps with the following reference) - P. Tröster, P. Schmitteckert, and F. Evers,
*DFT-based transport calculations, Friedel's sum rule and the Kondo effect*, arXiv:1106.3669 (linear-response conductance; overlaps with previous reference) - A.-M. Uimonen, E. Khosravi, A. Stan, G. Stefanucci, S. Kurth, R. van
Leeuwen, and E. K. U. Gross,
*Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model*, arXiv:1107.0162 (detailed comparison of various approximations) - M. Bürkle, J. K. Viljas, A. Mishchenko, D. Vonlanthen, G. Schön,
M. Mayor, T. Wandlowski, and F. Pauly,
*Conduction mechanisms in biphenyl-dithiol single-molecule junctions*, arXiv:1109.0273 (static DFT and Landauer-Büttiker approach) - C. Krzeminski, C. Delerue, G. Allan, D. Vuillaume, and R. M. Metzger,
*Theory of electrical rectification in a molecular monolayer*, arXiv:1109.2695 - D. Hou and J. H. Wei,
*The Difficulty of Gate Control in Molecular Transistors*, arXiv:1109.5940 - H. Hao, X.-H. Zheng, L.-L. Song, R.-N. Wang, and Z. Zeng,
*Electrostatic Spin Crossover in a Molecular Junction of a Single-Molecule Magnet Fe*, Phys. Rev. Lett._{2}**108**, 017202 (2012) (DFT, molecule in Au junction is predicted to show a transition between parallel and antiparallel alignment of the Fe spins, not a spin-crossover transition; no transport calculation; transition is driven by the Stark effect in the applied electric field, main idea is that the polarizability of the molecule has opposite [negative] sign in the junction compared to free space) - A. Calzolari, T. Jayasekera, K. W. Kim, and M. Buongiorno Nardelli,
*Ab initio thermal transport properties of nanostructures from density functional perturbation theory*, J. Phys.: Condens. Matter**24**, 492204 (2012) (due to phonons only, Landauer approach based on DFPT) - P. Darancet, J. R. Widawsky, H. J. Choi, L. Venkataraman, and J. B.
Neaton,
*Quantitative Current-Voltage Characteristics in Molecular Junctions from First Principles*, Nano Lett., Article ASAP DOI: 10.1021/nl3033137 (stong coupling to leads, nearly linear*IV*curve [cotunneling]; self-interaction-corrected DFT + Landauer formula, SIC brings calculated conductance down to experimental range) - Z. Liu, J. P. Bergfield, K. Burke, and C. A. Stafford,
*Accuracy of density functionals for molecular electronics: the Anderson junction*, arXiv:1201.1310 (linear response, zero temperature, obtain exact exchange-correlation functional and compare it to approximations) - N. Baadji and S. Sanvito,
*Giant magnetoresistance across the phase transition in spin crossover molecules*, arXiv:1201.2028 (single spin-crossover molecule in junction studied by static DFT and Landauer approach, huge change in current between the two spin states) - M. Bürkle, L. A. Zotti, J. K. Viljas, D. Vonlanthen, A. Mishchenko,
T. Wandlowski, M. Mayor, G. Schön, and F. Pauly,
*Ab-initio study of the thermopower of biphenyl-based single-molecule junctions*, arXiv:1202.5709 (static DFT and NEGF) - S. Bilan, L. A. Zotti, F. Pauly, and J. C. Cuevas,
*Theoretical study of the charge transport through C60-based single-molecule junctions*, arXiv:1203.3101 (static DFT) - D. Nozaki, H. Sevincli, S. M. Avdoshenko, R. Gutierrez, and G. Cuniberti,
*Control of quantum interference in molecular junctions: Understanding the origin of Fano and anti- resonances with parabolic diagrams*, arXiv:1203.5269; D. Nozaki, C. Gomes da Rocha, H. M. Pastawski, and G. Cuniberti,*Disorder and dephasing effect on electron transport through conjugated molecular wires in molecular junctions*, arXiv:1204.0152 (static DFT and NEGF) - A. Pertsova, M. Stamenova, and S. Sanvito,
*Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open boundary conditions approach*, arXiv:1204.0937 (one-dimensional chain, combination of LDA and Bethe ansatz) - G. Géranton, C. Seiler, A. Bagrets, L. Venkataraman, and F. Evers,
*Transport properties of individual C60-molecules*, arXiv:1206.1226 - R. Stadler, J. Cornil, and V. Geskin,
*Electron transfer through a single barrier inside a molecule: from strong to weak coupling*, arXiv:1207.7232, J. Chem. Phys. (charge distribution in biphenyl radical ions in electric field, not transport) - S. Ulstrup, T. Frederiksen, and M. Brandbyge,
*Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60-junction*, arXiv:1209.5644 (DFT and NEGF) - D. A. Ryndyk, A. Donarini, M. Grifoni, and K. Richter,
*Many-body localized molecular orbital approach to molecular transport*, arXiv:1210.5615 (DFT/LDA, Kohn-Sham orbitals transformed into localized molecular orbitals as basis, thereby obtain hopping amplitudes, calculate Coulomb matrix elements between them with ad-hoc dielectric constant but no screening, state that two-center [density-density] terms are dominant, no discussion of double counting of interactions; finally apply NEGF and Pauli master equation) - D. Toroz, M. Rontani, and S. Corni,
*Proposed alteration of images of molecular orbitals obtained using a scanning tunnelling microscope as a probe of electron correlation*, arXiv:1212.0550, Phys. Rev. Lett. - A. Pertsova, M. Stamenova, and S. Sanvito,
*Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open-boundary conditions approach*, J. Phys.: Condens. Matter**25**, 105501 (2013) - A. Saffarzadeh and G. Kirczenow,
*Voltage-controlled spin injection with an endohedral fullerene Co@C60 dimer*, Appl. Phys. Lett.**102**, 173101 (2013) (DFT and extended Hückel model, Landauer approach) - S. Kurth and G. Stefanucci,
*Dynamical correction to Kohn-Sham conductances from static density functional theory*, Phys. Rev. Lett.**111**, 030601 (2013) (linear-response conductance, Kondo effect for one electron in ground state) - G. Sclauzero and A. Dal Corso,
*Efficient DFT+U calculations of ballistic electron transport: Application to Au monatomic chains with a CO impurity*, arXiv:1301.5746 (DFT+U combined with Landauer-Büttiker approach) - F. R. Renani and G. Kirczenow,
*Switching of a Quantum Dot Spin Valve by Single Molecule Magnets*, arXiv:1303.1867 (two Mn_{12}molecules side-coupled to gold nanoparticle between electrodes, extended Hückel approach with spin-orbit coupling, Landauer formula for transmission coefficient) - J. F. Nossa, M. Fhokrul Islam, C. M. Canali, and M. R. Pederson,
*Electric control of a Fe4 single-molecule magnet in a single-electron transistor*, arXiv:1303.3283 (detailed paper, static DFT, motivated by transport but no transport calculation) - W. R. French, C. R. Iacovella, I. Rungger, A. Melo Souza, S. Sanvito, and
P. T. Cummings,
*Atomistic Simulations of Highly Conductive Molecular Transport Junctions Under Realistic Conditions*, arXiv:1303.5036 (molecular dynamics using semiempirical potentials and S-Au bonding modelled based on DFT) - C. Oppenländer, B. Korff, T. Frauenheim, and T. A. Niehaus,
*Atomistic modeling of dynamical quantum transport*, arXiv:1304.4157 (adiabatic time-dependent density functional theory, compared to Landauer approach) - T. Markussen, C. Jin, and K. S. Thygesen,
*Quantitatively Accurate Calculations of Conductance and Thermopower of Molecular Junctions*, arXiv:1305.3048 (DFT with GW approximation, also self-interaction correction, calculate transmission function at zero bias and from this the thermopower in linear response) - C. Oppenländer, B. Korff, and T. A. Niehaus,
*Higher harmonics and ac transport from time dependent density functional theory*, arXiv:1305.3746 (approximate TDDFT) - G. Stefanucci and S. Kurth,
*Kondo effect in the Kohn-Sham conductance of multiple levels quantum dots*, arXiv:1307.6337 (point out that static DFT + Landauer formalism can describe the Kondo effect when appropriate XC functionals are used, namely ones that show steps at integer filling fraction; useful references) - S. Liu, A. Nurbawono, and C. Zhang,
*Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions*, Sci. Rep.**5**, 15386 (2015) (based on Hershfield's mapping to effectively equilibrium system; assumptions questionable, higher-potential lead what run dry before steady state is reached, see also endnote 20)

- J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt,
*Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer*, Nature Mat.**13**, 247 (2014) (nonequilibrium BEC driven by pump laser, induced lasing) - K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen,
*Nonlinear interactions in an organic polariton condensate*, Nature Mat.**13**, 271 (2014) (similar to previous; nonequilibrium BEC and lasing) - J. Feist and F. J. Garcia-Vidal,
*Extraordinary Exciton Conductance Induced by Strong Coupling*, Phys. Rev. Lett.**114**, 196402 (2015) (nearly unaffected by disorder)

- M. Ludwig, B. Kubala, and F. Marquardt,
*The optomechanical instability in the quantum regime*, arXiv:0803.3714 - H. E. Türeci, M. Hanl, M. Claassen, A. Weichselbaum, T. Hecht, B.
Braunecker, A. Govorov, L. Glazman, J. von Delft, and A. Imamoglu,
*Shedding light on non-equilibrium dynamics of a spin coupled to fermionic reservoir*, arXiv:0907.3854 (optically excited spin coupled to quantum dot, which is coupled to an electron bath) - M. Esposito, R. Kawai, K. Lindenberg, and C. Van
den Broeck,
*Quantum-dot Carnot engine at maximum power*, arXiv:1001.2192 - A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin,
*Cooling and squeezing via quadratic optomechanical coupling*, arXiv:1004.2510 - D. S. Kosov, T. Prosen, and B. Zunkovic,
*Lindblad master equation approach to superconductivity in open quantum systems*, arXiv:1106.4656 - M. Misiorny, M. Hell, and M. R. Wegewijs,
*Spintronic magnetic anisotropy*, Nature Phys.**9**, 801 (2013) (coupling a quatum dot to a ferromagnetic lead induces a uniaxial anisotropy [here called quadrupolar field] to second order in the coupling Γ; also calculate the spectral function at finite frequency but zero bias using the density matrix numerical renormalization group)

- J. Demsar, B. Podobnik, V. V. Kabanov, D. Mihailovic, and T. Wolf,
*The superconducting gap Delta*, cond-mat/9905026 (the pseudogap and the superconducting gap show different time dependence); J. Demsar, K. Zagar, V. V. Kabanov, and D. Mihailovic,_{c}, the pseudogap Delta_{p}and pair fluctuations above T_{c}in overdoped Y_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7-delta}from femtosecond time-domain spectroscopy*Low-energy electronic structure in Y*, cond-mat/9907028_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7-y}comparison of time-resolved optical spectroscopy, NMR, neutron and tunneling data**P** - Y. Zuev, J. A. Skinta, M.-S. Kim, T. R. Lemberger, E. Wertz, K. Wu,
and Q. Li,
*The Role of Thermal Phase Fluctuations in Underdoped YBCO Films*, cond-mat/0407113 - W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S. Ono, K. Segawa, S.
Komiya, Y. Ando, and D. N. Basov,
*Constant effective mass across the phase diagram of high-T*, Phys. Rev. B_{c}cuprates**72**, 060511(R) (2005) - A. Uldry, M. Mali, J. Roos, and P. F. Meier,
*Anisotropy of the antiferromagnetic spin correlations in the superconducting state of YBa*, cond-mat/0506245, J. Phys.: Condens. Matter_{2}Cu_{3}O_{7}and YBa_{2}Cu_{4}O_{8}**17**, L499 (2005) (NMR/NQR: claim that in-plane antiferromagnetic correlations vanish at zero temperature in the superconducting phase) - D. M. Broun, P. J. Turner, W. A. Huttema, S. Ozcan, B. Morgan, R.
Liang, W. N. Hardy, and D. A. Bonn,
*In-Plane Superfluid Density of Highly Underdoped YBa*, cond-mat/0509223_{2}Cu_{3}O_{6+x} - R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and
A. Gupta,
*A spin triplet supercurrent through the half-metallic ferromagnet CrO*, cond-mat/0602359, Nature_{2}**439**, 825 (2006) - E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Lévy, A.
Huxley, L. Ortéga, E. Bourgeois, X. Blase, D. Débarre, and J.
Boulmer,
*Superconductivity in doped cubic silicon*, Nature**444**, 465 (2006) (in heavily boron-doped silicon,*T*about 0.35 K)_{c} - H. Yamazaki, N. Shannon, and H. Takagi,
*Interplay between superconductivity and ferromagnetism in epitaxial Nb(110)/Au(111)/Fe(110) trilayers*, cond-mat/0604030 (interesting oscillations of superconducting T_{c}with Au thickness, open questions) - J. E. Sonier, F. D. Callaghan, Y. Ando, R. F. Kiefl, J. H. Brewer, C. V.
Kaiser, V. Pacradouni, S.-A. Sabok-Sayr, X. F. Sun, S. Komiya, W. N. Hardy,
D. A. Bonn, and R. Liang,
*Avoided Quantum Criticality in YBa*, cond-mat/0610051_{2}Cu_{3}O_{y}and La_{2-x}Sr_{x}CuO_{4} - G.-M. Zhao,
*Unambiguous exclusion of d-wave gap symmetry in high-temperature superconductors*, cond-mat/0610599 (analysis of existing ARPES data for two compounds supports extended s-wave gap)**Q** - Y. Okada, T. Takeuchi, T. Baba, S. Shin, and H. Ikuta,
*The origin of the anomalously strong influence of out-of-plane disorder on high-T*, arXiv:0704.1698_{c}superconductivity - E. E. M. Chia, J.-X. Zhu, D. Talbayev, R. D. Averitt, K.-H. Oh, I.-S. Jo,
S.-I. Lee, and A. J. Taylor,
*Observation of Competing Order in a High-T*, arXiv:0705.1724 (Tl-2223, competing order with second gap at low temperatures)_{c}Superconductor with Femtosecond Optical Pulses - M. C. Boyer, W. D. Wise, K. Chatterjee, M. Yi, T. Kondo, T. Takeuchi, H.
Ikuta, and E. W. Hudson,
*Imaging the Two Gaps of the High-T*, arXiv:0705.1731 (evidence for second gap/competing order)_{C}Superconductor Pb-Bi_{2}Sr_{2}CuO_{6+x} - H.-H. Wen and X.-G. Wen,
*Two energy scales and close relationship between the pseudogap and superconductivity in underdoped cuprate superconductors*, arXiv:0708.3878, Physica C**460-462**, 28 (2007), Proceedings of M2S-2006 - A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman, S. Souma, M. Shi,
Z. Z. Li, H. Raffy, and J. C. Campuzano,
*Protected nodes and the collapse of the Fermi arcs in high T*, arXiv:0708.4099_{c}cuprates - J. M. Tranquada, G. D. Gu, M. Hücker, Q. Jie, H.-J. Kang,
R. Klingeler, Q. Li, N. Tristan, J. S. Wen, G. Y. Xu, Z. J. Xu, J. Zhou, and
M. v. Zimmermann,
*Evidence for unusual superconducting correlations coexisting with stripe order in La*, Phys. Rev. B_{1.875}Ba_{0.125}CuO_{4}**78**, 174529 (2008) - S. E. Sebastian, J. Gillett, N. Harrison, P. H. C. Lau, C. H.
Mielke, and G. G. Lonzarich,
*Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor*, arXiv:0806.4726 (for a "122" compound, giving information on the Fermi surface in the paramagnetic and SDW phases) - A. S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V.
Cataudella,
T. P. Devereaux, C. Bernhard, K. W. Kim, and J. Zaanen,
*Charge dynamics of doped holes in high T*, arXiv:0804.0479 (experiment and theory; explanation for mid-infrared band in terms of correlations and electron-phonon coupling)_{c}cuprates - A clue from optical conductivity - A. Koitzsch, D. Inosov, J. Fink, M. Knupfer, H. Eschrig, S. V.
Borisenko, G. Behr, A. Köhler, J. Werner, B. Büchner, R. Follath,
and H. A. Dürr,
*Electronic structure of LaO*, arXiv:0806.0833 (doping is seen to lead to significant spectral-weight transfer and Fe-d-like bands close to the Fermi energy are narrower than predicted by LDA)_{1-x}F_{x}FeAs from Photoemission Spectroscopy - C. Liu, T. Kondo, M. Tillman, M. Tillman, G. D. Samolyuk, Y. Lee, C.
Martin, J. L. McChesney, S. Bud'ko, M. Tanatar, E. Rotenberg, P. Canfield,
R. Prozorov, B. Harmon, and A. Kaminski,
*Fermi surface and strong coupling superconductivity in single crystal NdFeAsO*, arXiv:0806.2147 (ARPES, see relatively flat bands below the Fermi energy and pseudogap behaviour)_{1-x}F_{x}**P** - S. Margadonna, Y. Takabayashi, M. T. McDonald, M.
Brunelli, G. Wu, R. H. Liu, X. H. Chen, and K. Prassides,
*Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO*, arXiv:0806.3962 (Structural transition is seen to persist into the superconducting range)_{1-x}F_{x}(0 < x < 0.20) family**P** - H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann,
R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, J. Hamann-Borrero,
N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner,
*The electronic phase diagram of the LaO*, arXiv:0806.3533, Nature Materials_{1-x}F_{x}FeAs superconductor**P** - S. C. Riggs, J. B. Kemper, Y. Jo, Z. Stegen, L. Balicas, G. S.
Boebinger, F. F. Balakirev, A. Migliori, H. Chen, R. H. Liu, and X. H. Chen,
*Log-T divergence and Insulator-to-Metal Crossover in the normal state resistivity of fluorine doped SmFeAsO*, arXiv:0806.4011 (logarithmic divergence of resistivity if superconductivity is suppressed by strong magnetic field, magnetoresistance is positive, effect is more pronounced in underdoped than in optimally doped sample)_{1-x}F_{x}**P** - F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang,
P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu,
*Superconductivity in the PbO-type Structure alpha-FeSe*, arXiv:0807.2369 (superconductivity with T_{c}around 8K, requires Se deficiency) - M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M. R. Norman, J. C.
Campuzano, J. Chang, M. Mansson, Y. Sassa, T. Claesson, O. Tjernberg, L.
Patthey, N. Momono, M. Oda, M. Ido, S. Guerrero, C. Mudry, and J. Mesot,
*Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates*, arXiv:0810.0292 (ARPES, find Bogoliubov-type dispersion in the pseudogap phase, with a gap agreeing in size and angular dependence with the d-wave superconducting gap) - M. A. McGuire, R. P. Hermann, A. S. Sefat, B. C.
Sales, R. Jin, D. Mandrus, F. Grandjean, and G. J. Long,
*Influence of the rare-earth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO, and NdFeAsO*, arXiv:0811.0589**P** - C. Hess, A. Kondrat, A. Narduzzo, J. E. Hamann-Borrero, R. Klingeler,
J. Werner, G. Behr, and B. Büchner,
*The intrinsic electronic phase diagram of iron-pnictide superconductors*, arXiv:0811.1601**P** - F. Pfuner, J. G. Analytis, J.-H. Chu, I. R. Fisher, and L. Degiorgi,
*Charge dynamics of the spin-density-wave state in BaFe*, arXiv:0811.2195 (Optical conductivity, suggesting a partially ungapped Fermi surface and, caused by the partial gapping, reduced electronic scattering in the SDW phase)_{2}As_{2}**P** - X. Zhang, Y. S. Oh, Y. Liu, L. Yan, K. H. Kim, R. L. Greene, and I.
Takeuchi,
*Observation of the Josephson effect in Pb/(Ba,K)Fe*, arXiv:0812.3605 (suggesting s-wave pairing)_{2}As_{2}single crystal junctions - W. L. Yang, A. P. Sorini, C-C. Chen, B. Moritz, W.-S. Lee, F. Vernay, P.
Olalde-Velasco, J. D. Denlinger, B. Delley, J.-H. Chu, J. G. Analytis, I. R.
Fisher, Z. A. Ren, J. Yang, W. Lu, Z. X. Zhao, J. van den Brink, Z. Hussain,
Z.-X. Shen, and T. P. Devereaux,
*Evidence for weak electronic correlations in iron pnictides*, Phys. Rev. B**80**, 014508 (2009) (x-ray absorption and x-ray scattering accompanied by ab-initio and many-body theory, finding*U*of less than about 2eV and a Hund's rule coupling*J*of about 0.8 eV: intermediate coupling; changed relative to preprint); see also Viewpoint: Z. Tesanovic,*Are iron pnictides new cuprates?*, Physics**2**, 60 (2009) - J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu,
X. Dong, J. Zhang, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu,
C. Chen, and X. J. Zhou,
*Coexistence of Fermi arcs and Fermi pockets in a high-T*, Nature_{c}copper oxide superconductor**462**, 335 (2009) - A. Amato, R. Khasanov, H. Luetkens, and H.-H. Klauss,
*Probing the Ground State Properties of Iron-based Superconducting Pnictides and Related Systems by Muon-Spin Spectroscopy*, arXiv:0901.3139 - V. Crespo, J. G. Rodrigo, H. Suderow, S. Vieira, D. Hinks, and I. K.
Schuller,
*Evolution of the local superconducting density of states in ErRh*, arXiv:0902.0308 (tunneling spectroscopy, ferromagnetic correlations in superconducting state)_{4}B_{4}close to the ferromagnetic transition - P. Vilmercati, A. Fedorov, I. Vobornik, Manju U., G. Panaccione, A.
Goldoni, A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, D. Mandrus, D. J.
Singh, and N. Mannella,
*Evidence for Three-Dimensionality in the Fermi Surface Topology of Layered Electron Doped Ba(Fe*, arXiv:0902.0756 (ARPES)_{1-X}Co_{x})_{2}As_{2}Iron Superconductors - C. Bernhard, A. J. Drew, L. Schulz, V.K. Malik, M. Roessle, Ch.
Niedermayer, Th. Wolf, G.D. Varma, G. Mu, H. H. Wen, H. Liu, G. Wu, and X.H.
Chen,
*Muon spin rotation study of magnetism and superconductivity in BaFe*, arXiv:0902.0859 (muSR, find static but disordered local magnetic fields in superconducting phase for the electron-doped system, and microscopic phase separation for the hole-doped system)_{2-x}Co_{x}As_{2}and Pr_{1-x}Sr_{x}FeAsO - V. V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek,
V. H. Dao, L. F. Chibotaru, and J. Karpinsky,
*Type-1.5 Superconductors*, arXiv:0902.0997, Phys. Rev. Lett. (2009) (MgB_{2}single crystals, which are type-1 and type-2 with respect to the two components of the order parameter, leading to novel vortex-lattice states, also contains simulations) - S. Sanna, R. De Renzi, G. Lamura, C. Ferdeghini, A. Palenzona, M.
Putti, M. Tropeano, and T. Shiroka,
*Magnetic-superconducting phase boundary of SmFeAsO*, arXiv:0902.2156_{1-x}F_{x}studied via muon spin rotation: Unified behavior in a pnictide family - D. H. Lu, M. Yi, S.-K. Mo, J. G. Analytis, J.-H. Chu, A. S. Erickson,
D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher, and Z.-X. Shen,
*ARPES studies of the electronic structure of LaOFe(P,As)*, arXiv:0902.2503, Physica C (2009) (ARPES compared to LDA, agreement is quite good for P-compound but not for As-compound); M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He, X. J. Zhou, G. F. Chen, J. L. Luo, N. L. Wang, Z. Hussain, D. J. Singh, I. R. Fisher, and Z.-X. Shen,*Electronic Structure of the BaFe*, arXiv:0902.2628 (only electron pockets, no hole pockets, reasonable agreement between ARPES and renormalized LDA results)_{2}As_{2}Family of Iron Pnictides - I. Felner and Y. Kopelevich,
*Magnetization Measurement of a Possible High-Temperature Superconducting State in Amorphous Carbon Doped with Sulfur*, arXiv:0902.4631 (superconductivity below 38 K, coexisting with ferromagnetism) - L. Ortenzi, E. Cappelluti, L. Benfatto, and L. Pietronero,
*Fermi surface shrinking and interband coupling in iron-based pnictides*, arXiv:0903.0315 (LaFePO, really not about superconducting compound, but relevant to it) - S. Mukhopadhyay, S. Oh, A. M. Mounce, M. Lee, W. P.
Halperin, N. Ni, S. L. Bud'ko, P. C. Canfield, A. P. Reyes, and P. L. Kuhns,
*Magnetic Impurities in the Pnictide Superconductor Ba*, arXiv:0903.0674_{1-x}K_{x}Fe_{2}As_{2} - H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio,
and J. Shimoyama,
*Superconductivity at 17K in Sr*, arXiv:0903.3314_{4}Sc_{2}Fe_{2}P_{2}O_{6}: new superconducting layered oxypnictides with thick perovskite oxide layer - D. Parshall, K. A. Lokshin, Jennifer Niedziela, A. D. Christianson, M.
D. Lumsden, H. A. Mook, S. E. Nagler, M. A. McGuire, M. B. Stone, D. L.
Abernathy, A. S. Sefat, B. C. Sales, D. G. Mandrus, and T. Egami,
*Spin Excitations in BaFe*, arXiv:0903.4621 (spin resonance peak, comparison to cuprates)_{1.84}Co_{0.16}As_{2}Superconductor Observed by Inelastic Neutron Scattering - A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C.
Baines, and A. Amato,
*Muon spin rotation and relaxation in the superconducting ferromagnet UCoGe*, arXiv:0904.0532 (coexistence of ferromagnetism and superconductivity) - K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, M. A. McGuire, B. C.
Sales, and D. Mandrus,
*The Electronic Phase Diagram of the Iron-based High Tc Superconductor Ba(Fe(1-x)Co(x))2As2 Under Hydrostatic Pressure (0 less than x less than 0.099)*, arXiv:0904.2215 (resistivity measurements, pressure effect on SDW [suppressed] and superconductivity in the underdoped regime [strongly enhanced]) - J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu,
X. Dong, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X.
J. Zhou,
*Direct Observation of Fermi Pocket in High Temperature Cuprate Superconductors*, arXiv:0906.2682 (ARPES, observe Fermi pockets, not ungapped arcs, in the pseudogap phase) - M. A. Tanatar, J. P. Reid, H. Shakeripour, X. G. Luo, N.
Doiron-Leyraud, N. Ni, S. L. Bud'ko, P. C. Canfield, R. Prozorov, and L.
Taillefer,
*Doping Evolution of the Gap Structure in the Iron-Arsenide Superconductor Ba(Fe*, arXiv:0907.1276 (gap is nearly isotropic in the underdoped regime and becomes highly anisotropic in the overdoped regime, but remains gapless)_{1-x}Co_{x})_{2}As_{2}via Heat Transport - C. R. Rotundu, D. T. Keane, B. Freelon, S. D. Wilson, A. Kim, P. N.
Valdivia, E. Bourret-Courchesne, and R. J. Birgeneau,
*Phase diagram of the PrFeAsO*, arXiv:0907.1308_{1-x}F_{x}superconductor**P** - K. C. Kirshenbaum, S. R. Saha, N. P. Butch, J. D. Magill, and J. Paglione,
*Superconductivity in the Iron-Pnictide Parent Compound SrFe2As2*, arXiv:0907.4141 (superconductivity in nominally undoped parent compound, is suppressed by annealing, but reappears after cold-working, thus apparently defect-induced) - J. L. Tallon and J. G. Storey,
*Energy gaps in high-T*, arXiv:0908.4430 (reexamination of data, gap is found to scale with the mean-field T_{c}superconductors: BCS after all?_{c}value, suggesting a BCS-type theory) - L. Luan, O. M. Auslaender, T. M. Lippman, C. W. Hicks,
B. Kalisky, J.-H. Chu, J. G. Analytis, I. R. Fisher, J. R. Kirtley, and K.
A. Moler,
*Local measurement of the penetration depth in the pnictide superconductor Ba(Fe0.95Co0.05)2As*, arXiv:0909.0744 (magnetic force microscopy, results consistent with two full gaps, superfluid density is found to be uniform) - S. E. Sebastian, N. Harrison, M. M. Altarawneh, C. H. Mielke,
R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich,
*Metal-insulator quantum critical point beneath the high T*, arXiv:0910.2359 (YBCO, quantum oscillations in strong magnetic fields, find direct evidence for a metal-insulator QCP under the superconducting dome, but shifted to the underdoped side)_{c}superconducting dome**P** - J. E. Sonier, C. V. Kaiser, V. Pacradouni, S. A. Sabok-Sayr, C. Cochrane,
D. E. MacLaughlin, S. Komiya, and N. E. Hussey,
*Emergence of a Novel Frozen Magnetic State in a Heavily Overdoped Non-Superconducting Copper Oxide*, arXiv:0911.0407 (LSCO, a state with local moments tied to Sr-rich regions) - S. A. J. Kimber, A. Kreyssig, Y.-Z. Zhang, H. O. Jeschke, R.
Valentí,
F. Yokaichiya, E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J.
McQueeney, P. C. Canfield, A. I. Goldman, and D. N. Argyriou,
*Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2*, arXiv:0912.2376 (experiments and DFT calculations: effects of high pressure on lattice and electronic structure are similar to effects of doping, change in Fermi surface is likely more important for superconductivity than introduction of additional carriers with doping) - S. R. Saha, T. Drye, K. Kirshenbaum, N. P. Butch, and J. Paglione,
*Superconductivity at 23 K in Pt-doped BaFe2As2 single crystals*, arXiv:0912.2752 (Pt substituted for Fe, removes structural and SDW transitions, induces superconductivity at low temperatures) - L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, G. F. Chen, J. L. Luo,
N. L. Wang, and M. Z. Hasan,
*Observation of intertwined Fermi surface topology, orbital parity symmetries and electronic interactions in iron arsenide superconductors*, arXiv:0912.5089 (ARPES on optimally doped 122 compound) - T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He,
L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J.-F. Jia, and Q.-K.
Xue,
*Superconductivity in one-atomic-layer metal films grown on Si(111)*, Nature Phys.**6**, 104 (2010) (Pb and In films) - R. Daou, J. Chang, David LeBoeuf, O. Cyr-Choiniere, F. Laliberte, N.
Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and
L. Taillefer,
*Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor*, Nature**463**, 519 (2010) - L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P. Ong,
*Diamagnetism and Cooper pairing above T*, Phys. Rev. B_{c}in cuprates**81**, 054510 (2010), see also Viewpoint: S. A. Kivelson and E. H. Fradkin,*Fluctuation diamagnetism in high-temperature superconductors*, Physics**3**, 15 (2010) - B. Kalisky, J. R. Kirtley, J. G. Analytis, J.-H. Chu, A. Vailionis, I.
R. Fisher, and K. A. Moler,
*Stripes of increased diamagnetic susceptibility in underdoped superconducting Ba(Fe1-xCox)2As2 single crystals: Evidence for an enhanced superfluid density at twin boundaries*, Phys. Rev. B**81**, 184513 (2010); J. R. Kirtley, B. Kalisky, L. Luan, and K. A. Moler,*Meissner response of a bulk superconductor with an embedded sheet of reduced penetration depth*, Phys. Rev. B**81**, 184514 (2010); see also Viewpoint: J. M. Tranquada,*Modulated superfluid density in an iron-pnictide superconductor*, Physics**3**, 41 (2010) - S. E. Sebastian, N. Harrison, P. A. Goddard, M. M. Altarawneh, C. H.
Mielke, R. Liang, D. A. Bonn, W. N. Hardy, O. K. Andersen, and G. G.
Lonzarich,
*Compensated electron and hole pockets in an underdoped high-Tc superconductor*, Phys. Rev. B**81**, 214524 (2010) (quantum oscillation experiments and theoretical interpretation in terms of two types of hole pockets and one type of electron pockets in underdoped YBCO, for which superconductivity was suppressed by a magnetic field, results support density-wave order); see also Viewpoint: A. V. Chubukov,*Slicing the cuprate Fermi surface to reveal underlying order*, Physics**3**, 54 (2010) - E. Bauer, G. Rogl, Xing-Qiu Chen, R. T. Khan, H. Michor, G. Hilscher, E.
Royanian, K. Kumagai, D. Z. Li, Y. Y. Li, R. Podloucky, and P. Rogl,
*Unconventional superconducting phase in the weakly correlated noncentrosymmetric Mo*, Phys. Rev. B_{3}Al_{2}C compound**82**, 064511 (2010); A. B. Karki, Y. M. Xiong, I. Vekhter, D. Browne, P. W. Adams, D. P. Young, K. R. Thomas, Julia Y. Chan, H. Kim, and R. Prozorov,*Structure and physical properties of the noncentrosymmetric superconductor Mo*, Phys. Rev. B_{3}Al_{2}C**82**, 064512 (2010) (mixed singlet-triplet superconductivity in a non-centrosymmetric compound); note also Synopsis - T. Mertelj, P. Kusar, V. V. Kabanov, L. Stojchevska, N. D. Zhigadlo, S.
Katrych, Z. Bukowski, J. Karpinski, and D. Mihailovic,
*Quasiparticle relaxation dynamics in spin-density-wave and superconducting SmFeAsO*, arXiv:1001.1047 (pump-probe experiments on undoped/SDW and doped/superconducting samples)_{1-x}F_{x}single crystals - N. Pascher, J. Deisenhofer, H.-A. Krug von Nidda, M. Hemmida, H. S.
Jeevan, P. Gegenwart, and A. Loidl,
*Magnetic fluctuations and superconductivity in Fe pnictides probed by Electron Spin Resonance*, arXiv:1001.1302 (Eu_{0.5}K_{0.5}Fe_{2}As_{2}) - X. Zhu, F. Han, G. Mu, J. Tang, J. Ju, K. Tanigaki, and H.-H Wen,
*Superconductivity induced by doping Platinum in BaFe2As2*, arXiv:1001.4913 - M. Eisterer, M. Zehetmayer, H. W. Weber, J. Jiang, J. D. Weiss, A.
Yamamoto, E. E. Hellstrom, D. C. Larbalestier, N. D. Zhigadlo, and J.
Karpinski,
*Disorder effects and current percolation in FeAs based superconductors*, arXiv:1001.5386 - J. G. Analytis, J.-H. Chu, R. D. McDonald, S. C. Riggs, and I. R. Fisher,
*Enhanced Fermi surface nesting in superconducting BaFe*, arXiv:1002.1304_{2}(As_{1-x}P_{x})_{2}revealed by de Haas-van Alphen effect - T. Yamazaki, N. Takeshita, R. Kobayashi, H. Fukazawa, Y. Kohori, K.
Kihou, C.-H. Lee, H. Kito, A. Iyo, and H. Eisaki,
*Extremely high sensitivity to uniaxial stress in pressure induced superconductivity of BaFe2As2*, arXiv:1003.0913 - M. S. Anwar, M. Hesselberth, M. Porcu, and J. Aarts,
*Supercurrents through half-metallic ferromagnetic CrO*, arXiv:1003.4446 (surprising long-range proximity effect in the CrO_{2}revisited_{2}) - D. Kalok, A. Bilusic, T. I. Baturina, V. M. Vinokur, and C. Strunk,
*Charge BKT Transition and Electron-Phonon Decoupling in Thin TiN Films*, arXiv:1004.5153 - M. Hücker, M. v. Zimmermann, G. D. Gu, Z. J. Xu, J. S. Wen, G.
Xu, H. J. Kang, A. Zheludev, and J. M. Tranquada,
*Stripe order in superconducting La(2-x)Ba(x)CuO(4) for 0.095 <= x <= 0.155*, arXiv:1005.5191 - D. Wu, N. Barisic, M. Dressel, G. H. Cao, Z-A. Xu, J. Carbotte, and E.
Schachinger,
*Eliashberg Analysis of Optical Spectra Reveals Strong Coupling of Charge Carriers to Spin Fluctuations in Superconducting Iron Pnictides*, arXiv:1006.5468 (analysis of optical conductivity data) - P. M. Shirage, K. Miyazawa, K. Kihou, H. Kito, Y. Yoshida,
Y. Tanaka, H. Eisaki, and A. Iyo,
*Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO_{1-y} superconductor*, arXiv:1007.2666 (unlike for (Ba,K)Fe_{2}As_{2}, where there is a sizeable inverse isotope effect) - D. Fournier, G. Levy, Y. Pennec, J. L. McChesney, A. Bostwick, E.
Rotenberg, R. Liang, W. N. Hardy, D. A. Bonn, I. S. Elfimov, and A.
Damascelli,
*Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x*, arXiv:1007.4027 (ARPES to determine quasiparticle weight, found to vanish in the underdoped regime) - M. Yoshizawa, R. Kamiya, R. Onodera, Y. Nakanishi, K. Kihou, H.
Eisaki, and C. H. Lee,
*Strong electron-lattice coupling and orbital fluctuations in iron pnictide superconductor Ba(Fe1-xCox)2As2*, arXiv:1008.1479 - B. Lee, S. Khim, J. S. Kim, G. R. Stewart, and K. H. Kim,
*Single crystal growth and superconducting properties of LiFeAs*, arXiv:1008.2050 (also see next reference) - H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov,
*Nodeless two-gap superconductivity in stoichiometric iron pnictide LiFeAs*, arXiv:1008.3251 (suggest*s*_{+-}symmetry; also see previous reference) - J. Wen, Q. Jie, Q. Li, M. Hücker, M. von Zimmermann, Zhijun
Xu, D. K. Singh, L. Zhang, G. Gu, and J. M. Tranquada,
*Magnetic-field-induced stripe order and two-dimensional superconductivity in a high-Tc superconductor*, arXiv:1009.0031 - C. Zhang, L. Sun, Z. Chen, X. Zhou, Q. Wu, W. Yi, J. Guo, X. Dong,
and Z. Zhao,
*Phase Diagram of Pressure-induced Superconductivity and its Relation to Hall Coefficient in Bi2Te3 Single Crystal*, arXiv:1009.3746 (superconductivity emerging from a topological insulator) - M. K. Forthaus, K. Sengupta, O. Heyer, N. E. Christensen, A. Svane, K.
Syassen, D. I. Khomskii, T. Lorenz, and M. M. Abd-Elmeguid,
*Superconductivity in SnO: a Nonmagnetic Analog to Fe-based Superconductors?*, arXiv:1009.3787 (same symmetry as FeSe, superconductivity in a certain pressure range) - A. K. Pramanik, L. Harnagea, C. Nacke, A. U. B. Wolter, S. Wurmehl, V.
Kataev, and B. Büchner,
*Fishtail effect and vortex dynamics in LiFeAs single crystals*, arXiv:1009.4896 (observe strong pinning, also construct phase diagram of vortex lattice); O. Heyer, T. Lorenz, V. B. Zabolotnyy, D. V. Evtushinsky, S. V. Borisenko, I. Morozov, L. Harnagea, S. Wurmehl, C. Hess, and B. Büchner,*Intrinsic scattering in pnictides: transport properties of LiFeAs single crystals*, arXiv:1010.2876; U. Stockert, M. Abdel-Hafiez, D. V. Evtushinsky, V. B. Zabolotnyy, A. U. B. Wolter, S. Wurmehl, I. Morozov, R. Klingeler, S. V. Borisenko, and B. Büchner,*The superconducting gaps in LiFeAs: Joint study of specific heat and ARPES*, arXiv:1011.4246 (two distinct, node-less gaps) - C. Liu, A. D. Palczewski, T. Kondo, R. M. Fernandes, E. D. Mun, H.
Hodovanets, A. N. Thaler, J. Schmalian, S. L. Bud'ko, P. C. Canfield,
and A. Kaminski,
*Importance of Fermi surface topology for high temperature superconductivity in electron-doped iron arsenic superconductors*, arXiv:1011.0980 - K. Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, W. A. Coniglio,
C. C. Agosta, A. Gurevich, and R. Prozorov,
*Anisotropic upper critical field and a possible Fulde-Ferrel-Larkin-Ovchinnikov state in a stoichiometric pnictide superconductor LiFeAs*, arXiv:1011.5126 (measure the components of the anisotropic*H*2)_{c} - D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Sutherland, B. J.
Ramshaw, J. Levallois, R. Daou1, F.s Laliberté, O. Cyr-Choiniere1,
J. Chang, Y. J. Jo, L. Balicas, R. Liang, D. A. Bonn, W. N. Hardy, C.
Proust, and L. Taillefer,
*Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements*, Phys. Rev. B**83**, 054506 (2011); see also Viewpoint: M. Vojta,*Picking the cuprates' Fermi pockets*, Physics**4**, 12 (2011) - H. Mizoguchi, S. Matsuishi, M. Hirano, M. Tachibana,
E. Takayama-Muromachi, H. Kawaji, and H. Hosono,
*Coexistence of Light and Heavy Carriers Associated with Superconductivity and Antiferromagnetism in CeNi0.8Bi2 with a Bi Square Net*, Phys. Rev. Lett.**106**, 057002 (2011) - U. Chatterjee, J. Zhao, D. Ai, S. Rosenkranz, A. Kaminski, H. Raffy,
Z. Z. Li, K. Kadowaki, M. Randeria, M. R. Norman, and J. C. Campuzano,
*Electronic phase diagram of high-temperature copper oxide superconductors*, PNAS**108**, 9346 (2011) - A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I.
Bozovic,
*Superconductor-insulator transition in La2-xSrxCuO4 at the pair quantum resistance*, Nature**472**, 458 (2011) - J. S. Kim, G. R. Stewart, S. Kasahara, T. Shibauchi, T. Terashima, and Y.
Matsuda,
*Specific heat discontinuity, DC, at Tc in BaFe2(As0.7P0.3)2 - consistent with unconventional superconductivity*, J. Phys.: Condens. Matter**23**, 222201 (2011) - A. Maisuradze, A. Shengelaya, A. Amato, E. Pomjakushina, and H. Keller,
*Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa2Cu3Ox*, Phys. Rev. B**84**, 184523 (2011) (coupling increases with pressure) - A. Piriou, N. Jenkins, C. Berthod, I. Maggio-Aprile, and Ø.
Fischer,
*First direct observation of the Van Hove singularity in the tunneling spectra of cuprates*, arXiv:1103.0850, Nature Commun.**2**, 221 (2011) (Bi-2201, also observe a pseudogap above the superconducting dome on the overdoped side) - K. Jin, N. P. Butch, K. Kirshenbaum, J. Paglione, and R. L. Greene,
*Link between spin fluctuations and electron pairing in copper oxide superconductors*, Nature**476**, 73 (2011) (electron-doped La_{2-x}Ce_{x}CuO_{4}) - E. A. Yelland, J. M. Barraclough, W. Wang, K. V. Kamenev, and A. D.
Huxley,
*High-field superconductivity at an electronic topological transition in URhGe*, Nature Physics (2011), doi:10.1038/nphys2073 - C.-L. Song
*et al.*,*Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor*, Science**332**, 1410 (2011) (STS on superconducting FeSe, showing breaking of fourfold rotation symmetry [nematicity?]) - J. Chang, N. Doiron-Leyraud, F. Laliberté, R. Daou, D.
LeBoeuf, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust,
I. Sheikin, K. Behnia, and L. Taillefer,
*Nernst effect in the cuprate superconductor YBCO: Broken rotational and translational symmetries*, arXiv:1103.3044 (superconductivity suppressed by magnetic field, evolution of in-plane anisotropy below*T**and would-be*T*)_{c} - D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V.
Chandrasekhar,
*Coexistence of superconductivity and ferromagnetism in two dimensions*, arXiv:1103.4006 (at the interface between LaAlO_{3}and SrTiO_{3}) - S. E. Sebastian, N. Harrison, M. M. Altarawneh, R. Liang, D. A. Bonn, W.
N. Hardy, and G. G. Lonzarich,
*Chemical potential oscillations from a single nodal pocket in the underdoped high-Tc superconductor YBa2Cu3O6+x*, arXiv:1103.4180 (second-harmonic quantum oscillations, suggesting a single type of electron-like Fermi pocket in the nodal region) - A. E. Taylor, M. J. Pitcher, R. A. Ewings, T. G. Perring, S. J. Clarke,
and A. T. Boothroyd,
*Spin fluctuations in LiFeAs observed by neutron scattering*, arXiv:1104.1609 (support the same type of superconductivity as in other pnictides, not triplet pairing) - M. A. Tanatar, J.-Ph. Reid, S. Rene de Cotret, N. Doiron-Leyraud, F.
Laliberte, E. Hassinger, H. Kim, K. Cho, Yoo Jang Song, Yong Seung Kwon, R.
Prozorov, and L. Taillefer,
*Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements*, arXiv:1104.2209 (support isotropic 3D gap, no signs of different gaps on different Fermi pockets) - S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum,
P. Y. Zavalij, J. W. Lynn, and J. Paglione,
*Structural collapse and 45 K superconductivity in electron-doped CaFe2As2*, arXiv:1105.4798 - T. Hänke, S. Sykora, R. Schlegel, D. Baumann, L. Harnagea, S.
Wurmehl, M. Daghofer, B. Büchner, J. van den Brink, and C. Hess,
*Probing unconventional superconductivity in LiFeAs by quasiparticle interference*, arXiv:1106.4217 - G. Koren and T. Kirzhner,
*Transport and spectroscopic properties of superconductor - ferromagnet - superconductor junctions of La1.9Sr0.1CuO4 - La0.67Ca0.33MnO3 - La1.9Sr0.1CuO4*, arXiv:1107.0806; G. Koren, T. Kirzhner, and P. Aronov,*Critical current measurements in superconductor - ferromagnet - superconductor junctions of YBa2Cu3Oy - SrRuO3 - YBa2Cu3Oy: No evidence for a dominant proximity induced triplet superconductivity in the ferromagnetic barrier*, arXiv:1107.0808 - S. Hacohen-Gourgy, B. Almog, and G. Deutscher,
*Coexistence of a triplet nodal order-parameter and a singlet order-parameter at the interfaces of ferromagnet-superconductor Co/CoO/In junctions*, arXiv:1107.2252 - C. Putzke, A. I. Coldea, I. Guillamon, D. Vignolles, A. McCollam, D.
LeBoeuf, M. D. Watson, I. I. Mazin, S. Kasahara, T. Terashima, T. Shibauchi,
Y. Matsuda, and A. Carrington,
*A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs*, arXiv:1107.4375 (claim good agreement with DFT for LiFeAs, but disagreement with earlier ARPES results); S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. A. Kordyuk, and B. Büchner,*Comment*, arXiv:1108.1159 (challenge the conclusions regarding LiFeAs);*Reply*, arXiv:1108.3956 - M. Mondal, S. Kumar, M. Chand, A. Kamlapure, G. Saraswat, G. Seibold, L.
Benfatto, and P. Raychaudhuri,
*Role of the vortex-core energy on the Beresinkii-Kosterlitz-Thouless transition in thin films of NbN*, arXiv:1108.0912 (experiment and theory) - P. Cai, C. Ye, W. Ruan, X. Zhou, A. Wang, M. Zhang, X. Chen, and
Y. Wang,
*Imaging the coexistence of superconductivity and a charge density modulation in K0.73Fe1.67Se2 superconductor*, arXiv:1108.2798 (STM, see also following article by Wiesenmayer*et al.*) - E. Wiesenmayer, H. Luetkens, G. Pascua, R. Khasanov, A. Amato, H. Potts,
B. Banusch, H.-H. Klauss, and D. Johrendt,
*Microscopic co-existence of superconductivity and magnetism in Ba1-xKxFe2As2*, arXiv:1108.4307 (x-ray defraction and μSR, see also previous article by Cai*et al.*) - A. Charnukha, J. Deisenhofer, D. Pröpper, M. Schmidt, Z. Wang, Y.
Goncharov, A. N. Yaresko, V. Tsurkan, B. Keimer, A. Loidl, and A. V. Boris,
*Optical conductivity of superconducting Rb2Fe4Se5*, arXiv:1108.5698 - N. Qureshi, P. Steffens, Y. Drees, A. C. Komarek, D. Lamago, Y. Sidis,
L. Harnagea, H.-J. Grafe, S. Wurmehl, B. Büchner, and M. Braden,
*Incommensurate magnetic excitations in superconducting LiFeAs*, arXiv:1108.6187 - Y. Wang, W. P. Pratt, Jr., and N. O. Birge,
*Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions*, arXiv:1108.6243 - X. Zhang, B. Lee, S. Khim, K. H. Kim, R. L. Greene, and I. Takeuchi,
*Probing the Superconducting Order Parameter of LiFeAs by Point Contact Spectroscopy*, arXiv:1109.1537 (indicating that the pairing is at least partly of s-wave type) - J.-Y. Lin, Y. S. Hsieh, D. A. Chareev, A. N. Vasiliev, Y. Parsons, and
H. D. Yang,
*Low temperature specific-heat measurements of a coexistence of isotropic and extended s-wave order parameters in superconducting FeSe single crystals*, arXiv:1109.5225 - D. S. Inosov, P. Bourges, A. Ivanov, A. Prokofiev, E. Bauer, and B.
Keimer,
*Dispersion and damping of zone-boundary magnons in the noncentrosymmetric superconductor CePt3Si*, arXiv:1109.5784 - T. Katase, H. Hiramatsu, T. Kamiya, and H. Hosono,
*Indirect electron doping in BaFe2As2 using metastable cation doped epitaxial films*, arXiv:1110.0045 - S. Sanna, P. Carretta, P. Bonfà, G. Prando, G. Allodi, R. De Renzi,
T. Shiroka, G. Lamura, A. Martinelli, and M. Putti,
*Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxy-pnictides*, arXiv:1110.6326 (susceptibility and μSR) - S. V. Borisenko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky, T.
K. Kim, I. V. Morozov, R. Follath, and B. Büchner,
*One-sign order parameter in iron based superconductor*, arXiv:1110.6922 (ARPES on undoped LiFeAs; no sign changes of order parameter, but unclear how ARPES can rule out sign changes between Fermi sheets) - E. H. da Silva Neto, C. V. Parker, P. Aynajian, A. Pushp, J. Wen, G.
Gu, and A. Yazdani,
*Scattering from incipient stripe order in the high-temperature superconductor Bi2Sr2CaCu2O8+d*, arXiv:1111.2564 (comparison of quasiparticle scattering with model calculations, confirm their previous finding of short-range stripe order) - K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.-H. Liu, P. Richard, T.
Sato, J. B. He, D.-M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.-C. Wang,
*Unconventional Anisotropic s-Wave Superconducting Gaps of LiFeAs Iron-Pnictide Superconductor*, arXiv:1111.3496 - W. Zhao, Q. Wang, M. Liu, W. Zhang, Y. Wang, M. Chen, Y. Guo, K. He, X.
Chen, Y. Wang, J. Wang, X. Xie, Q. Niu, L. Wang, X. Ma, J. Jain, M. H. W.
Chan, and Q.-K. Xue,
*Phases and phase transitions in two dimensional superconducting films*, arXiv:1112.1207 (STM and transport measurements on Pb films, find two transitions, consistent with vortex unbinding [BKT] and local pairing) - M. Bendele, A. Ichsanow, Yu. Pashkevich, L. Keller, T. Strässle, A.
Gusev, E. Pomjakushina, K. Conder, R. Khasanov, and H. Keller,
*Coexistence of Superconductivity and Magnetism in FeSe*, arXiv:1112.2602_{1-x}under Pressure - S. Kasahara, K. Hashimoto, H. Ikeda, T. Terashima, Y. Matsuda, and T.
Shibauchi,
*Contrasts in electron correlations and inelastic scattering between LiFeAs and LiFeP revealed by charge transport*, arXiv:1112.5597 - K. Fujita, A. R. Schmidt, E.-A. Kim, M. J. Lawler, D. H. Lee, J. C.
Davis, H. Eisaki, and S. Uchida,
*Spectroscopic Imaging STM Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors*, arXiv:1112.5893, J. Phys. Soc. Jpn.**81**, 011005 (2012) (long paper presenting and discussing distinct states in arc and antinodal regions) - K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.-H. Liu, P. Richard, T. Sato,
J. B. He, D.-M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S.-C. Wang,
*Unconventional Anisotropic s-Wave Superconducting Gaps of the LiFeAs Iron-Pnictide Superconductor*, Phys. Rev. Lett.**108**, 037002 (2012) (ARPES, nodeless but anisotropic gap on the Fermi surfaces) - L. Sun
*et al.*,*Re-emerging superconductivity at 48 kelvin in iron chalcogenides*, Nature doi:10.1038/nature10813 (2012) - T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A.
Ballestar, and A. Setzer,
*Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High-Temperature Superconductivity in Water-Treated Graphite Powder*, Adv. Mat. DOI: 10.1002/adma.201202219 (2012) (based on magnetization hysteresis loops) - L. Ma, G. F. Ji, J. Dai, X. R. Lu, M. J. Eom, J. S. Kim, B. Normand,
and W. Yu,
*Microscopic Coexistence of Superconductivity and Antiferromagnetism in Underdoped Ba(Fe1-xRux)2As2*, Phys. Rev. Lett.**109**, 197002 (2012) - M. Mondal, B. Joshi, S. Kumar, A. Kamlapure, S. C. Ganguli, A.
Thamizhavel, S. S. Mandal, S. Ramakrishnan, and P. Raychaudhuri,
*Observation of Andreev bound state and multiple energy gaps in the non-centrosymmetric superconductor BiPd*, arXiv:1202.2454 (also observe zero-bias conductance peak) - D.-J. Jang, J. B. Hong, Y. S. Kwon, T. Park, K. Gofryk, F. Ronning, J. D.
Thompson, and Y. Bang,
*Evidence for +-s-wave pairing symmetry in LiFeAs: specific heat study*, arXiv:1203.1362 - V. Grinenko, M. Abdel-Hafiez, S. Aswartham, A. U. B. Wolter-Giraud, C.
Hess, M. Kumar, S. Wurmehl, K. Nenkov, G. Fuchs, B. Holzapfel, S.-L.
Drechsler, and B. Büchner,
*KFe2As2: coexistence of superconductivity and local moment derived spin-glass*, arXiv:1203.1585 - S. V. Borisenko, A. N. Yaresko, D. V. Evtushinsky, V. B. Zabolotnyy,
A. A. Kordyuk, J. Maletz, B. Büchner, Z. Shermadini, H. Luetkens, K.
Sedlak, R. Khasanov, A. Amato, A. Krzton-Maziopa, K. Conder, E. Pomjakushina,
H.-H. Klauss, and E. Rienks,
*"Cigar" Fermi surface as a possible requisite for superconductivity in iron-based superconductors*, arXiv:1204.1316 (ARPES and μSR compared to DFT, for Rb_{0.77}Fe_{1.61}Se_{2}, suggest presence of superconducting and magnetic domains) - T. Hanaguri, K. Kitagawa, K. Matsubayashi, Y. Mazaki, Y. Uwatoko, and
H. Takagi,
*Scanning Tunneling Microscopy/Spectroscopy of Vortices in LiFeAs*, arXiv:1204.4863 - S. Iimura, S. Matuishi, H. Sato, T. Hanna, Y. Muraba, S. W. Kim, J.
E. Kim, M. Takata, and H. Hosono,
*Two-dome structure in electron-doped iron arsenide superconductors*, Nature Commun.**3**, 943 (2012), also arXiv:1207.0583 (LaFeAsO doped by hydrogen substituting for oxygen) - S. Grothe, S. Chi, P. Dosanjh, R. Liang, W. N. Hardy, S .A. Burke, D. A.
Bonn, and Y. Pennec,
*Bound States of Defects in Superconducting LiFeAs Studied by Scanning Tunneling Spectroscopy*, arXiv:1207.4249 (consistent with s_{+-}pairing) - J.-Ph. Reid, A. Juneau-Fecteau, R. T. Gordon, S. Rene de Cotret, N.
Doiron-Leyraud, X. G. Luo, H. Shakeripour, J. Chang, M. A. Tanatar, H. Kim,
R. Prozorov, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo,
H. Eisaki, B. Shen, H.-H. Wen, and L. Taillefer,
*From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2*, arXiv:1207.5719 (evidence for*d*-wave pairing in this stoichiometric 122 compound) - M. Wang, M. Wang, H. Miao, S. V. Carr, D. L. Abernathy, M. B. Stone, X. C.
Wang, L.i Xing, C. Q. Jin, X. Zhang, J. Hu, T. Xiang, H. Ding, and P. Dai,
*Effect of Li-deficiency impurities on the electron-overdoped LiFeAs superconductor*, arXiv:1208.0909 (transport, ARPES, neutron scattering; superconducting and non-superconducting samples) - G. Li, R. R. Urbano, P. Goswami, C. Tarantini, B. Lv, P. Kuhns, A. P.
Reyes, C. W. Chu, and L. Balicas,
*Magnetic field-induced parity and time-reversal symmetry broken superconducting state in LiFeAs*, arXiv:1208.4882 (experiment and Ginzburg-Landau analysis, suggest pairing in strong magnetic field that breaks time-reversal and parity symmetries, might be d+id or p+ip) - Q. Q. Ge, Z. R. Ye, M. Xu, Y. Zhang, J. Jiang, B. P. Xie, Y. Song, C.
L. Zhang, P. Dai, and D. L. Feng,
*Anisotropic but nodeless superconducting gap in the presence of spin density wave in iron-pnictide superconductor NaFe1-xCoxAs*, arXiv:1209.1967 (ARPES, coexistence between stripe-like SDW [but crystal is twinned], reconstruction due to SDW changes Fermi pockets only little, superconducting gap on both electron pockets is highly anisotropic but nodeless in the coexistence regime, whereas it is essentially isotropic for a more strongly Co-doped sample without SDW, gap on hole pocket is isotropic in both samples) - J. Knolle, V. B. Zabolotnyy, I. Eremin, S. V. Borisenko, N. Qureshi,
M. Braden, D. V. Evtushinsky, T. K. Kim, A. A. Kordyuk, S. Sykora, Ch. Hess,
I. V. Morozov, S. Wurmehl, R. Moessner, and B. Büchner,
*Incommensurate magnetic fluctuations and Fermi surface topology in LiFeAs*, arXiv:1210.3792 (ARPES, also theoretical discussion) - W. Li
*et al.*,*Superconductivity in a single layer alkali-doped FeSe: a weakly coupled two-leg ladder system*, arXiv:1210.4619 (Fermi surface of film is different from bulk, but superconductivity is similar, conclude that it is not nesting driven) - H. Maeter, J. E. H. Borrero, T. Goltz, J. Spehling, A. Kwadrin, A.
Kondrat, L. Veyrat, G. Lang, H.-J. Grafe, C. Hess, G. Behr, B. Büchner,
H. Luetkens, C. Baines, A. Amato, N. Leps, R. Klingeler, R.Feyerherm, D.
Argyriou, and H.-H. Klauss,
*Structural and electronic phase diagrams of CeFeAsO1-xFx and SmFeAsO1-xFx*, arXiv:1210.6959 - D. V. Evtushinsky, V. B. Zabolotnyy, L. Harnagea, A. N. Yaresko, S.
Thirupathaiah, A. A. Kordyuk, J. Maletz, S. Aswartham, S. Wurmehl, E. Rienks,
R. Follath, B. Büchner, and S. V. Borisenko,
*Electronic band structure and momentum dependence of the superconducting gap in (Ca,Na)Fe2As2 from angle-resolved photoemission spectroscopy*, arXiv:1211.4593 - J. Timmerwilke, E. Kim, J. Maughan, J. S. Kim, G. R. Stewart, and A.
Biswas,
*a-b Plane Point Contact Spectroscopy measurements of optimally Cobalt doped Ba-122 iron-pnictide superconductors*, arXiv:1211.4659 (two gaps, no nodes) - C. Hess, S. Sykora, T. H\änke, R. Schlegel, D. Baumann, V.
B. Zabolotnyy, L. Harnagea, S. Wurmehl, J. van den Brink, and B. Büchner,
*Resolving the quasiparticle scattering paradox in superconducting LiFeAs*, arXiv:1212.2009 (quasi-particle interference experiments and theory) - S. Yonezawa, T. Kajikawa, and Y. Maeno,
*First-Order Superconducting Transition of Sr2RuO4*, arXiv:1212.4954 - D. H. Torchinsky, F. Mahmood, A. T. Bollinger, I Bozovic, and N. Gedik,
*Fluctuating charge-density waves in a cuprate superconductor*, Nature Materials (2013), doi:10.1038/nmat3571 (competing CDW fluctuations and superconductivity in underdoped LSCO) - A. F. May, M. A. McGuire, J. E. Mitchell, A. S. Sefat, and B. C. Sales,
*Influence of spin fluctuations on the thermal conductivity in superconducting Ba(Fe*, Phys. Rev. B_{1-x}Co_{x})_{2}As_{2}**88**, 064502 (2013) (thermal conductivity shows an additional positive contribution below superconducting transition, attributed to scattering of low-energy spin fluctuations becoming weaker by suppressed spin density of states [spin-gap formation]) - S. Sakai, S. Blanc, M. Civelli, Y. Gallais, M. Cazayous, M.-A.
Measson, J. S. Wen, Z. J. Xu, G. D. Gu, G. Sangiovanni, Y. Motome, K. Held,
A. Sacuto, A. Georges, and M. Imada,
*Raman-Scattering Measurements and Theory of the Energy-Momentum Spectrum for Underdoped Bi2Sr2CaCuO8+δ Superconductors: Evidence of an s-Wave Structure for the Pseudogap*, Phys. Rev. Lett.**111**, 107001 (2013) (Raman-scattering experiment and theory, evidence for pseudogap having nodeless s-wave character; title changed) - G. F. Ji, J. S. Zhang, L. Ma, P. Fan, P. S. Wang, J. Dai, G. T. Tan, Y.
Song, C. L. Zhang, P. Dai, B. Normand, and W. Yu,
*Simultaneous Optimization of Spin Fluctuations and Superconductivity under Pressure in an Iron-Based Superconductor*, Phys. Rev. Lett.**111**, 107004 (2013) (NMR experiments on overdoped pnictide; strength of spin fluctuations, inferred from nuclear-spin relaxation rate, shows peak as function of pressure, superconducting*T*shows the same pressure dependence)_{x} - C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F.
Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and
J. Mannhart,
*Interface superconductor with gap behaviour like a high-temperature superconductor*, Nature (2013) doi:10.1038/nature12494 (2DEG at LaAlO3-SrTiO3 interface, tunable by gate voltage) - C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F.
Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and
J. Mannhart,
*nterface superconductor with gap behaviour like a high-temperature superconductor*, Nature**502**, 528 (2013) (critical temperature shows a dome, whereas pseudogap increases with underdoping) - N. Barišić,
*et al.*,*Universal quantum oscillations in the underdoped cuprate superconductors*, Nature Phys. (2013), doi:10.1038/nphys2792 (quantum oscillations observed in Hg1201) - J. Engelmann
*et al.*,*Strain induced superconductivity in the parent compound BaFe2As2*, Nature Commun.**4**, 2877 (2013) (tensile strain due to growth on substrate with lattice mismatch) - K. J. Zhou, Y. B. Huang, C. Monney, X. Dai, V. N. Strocov, N. L. Wang,
Z. G. Chen, C. Zhang, P. Dai, L. Patthey, J. van den Brink, H.
Ding, and T. Schmitt,
*Persistent high-energy spin excitations in iron pnictide superconductors*, arXiv:1301.1289 (resonant inelastic x-ray scattering; pronounced high-energy paramagnons in the superconducting state of Ba_{0.6}K_{0.4}Fe_{2}As_{2}) - D. Daghero, M. Tortello, G. A. Ummarino, V. A. Stepanov, F.
Bernardini, M. Tropeano, M. Putti, and R. S. Gonnelli,
*Effects of isoelectronic Ru substitution at the Fe site on the energy gaps of optimally F-doped SmFeAsO*, arXiv:1301.3757 (Andreev reflection spectroscopy, also theory, ratios of gap to*T*, increase markedly for low_{c}*T*)_{c} - R. S. Gonnelli, M. Tortello, D. Daghero, P. Pecchio, S. Galasso, V. A.
Stepanov, Z. Bukowski, N. D. Zhigadlo, J. Karpinski, K. Iida, and B.
Holzapfel,
*The order-parameter symmetry and Fermi surface topology of 122 Fe-based superconductors: a point-contact Andreev-reflection study*, arXiv:1301.3782, J. Supercond. Novel Magn. (Ba-122 and Ca-122 compounds)**P** - T. Yoshida
*et al.*,*Importance of both spin and orbital fluctuations in BaFe2(As1-xPx)2: Evidence from superconducting gap anisotropy*, arXiv:1301.4818 (ARPES, s_{+-}pairing, support comparable strength of spin and orbital fluctuations as the pairing glue) - F. F. Tafti, T. Fujii, A. Juneau-Fecteau, S. Rene de Cotret, N.
Doiron-Leyraud, A. Asamitsu, and L. Taillefer,
*Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A possible topological superconductor*, arXiv:1302.1943 - T. Ritschel, J. Trinckauf, G. Garbarino, M. Hanfland, M. v.
Zimmermann, H. Berger, B. Buechner, and J. Geck,
*Pressure dependence of the charge density wave in 1T-TaS2 and its relation to superconductivity*, arXiv:1302.6449 (find microscopic coexistence of CDW and superconductivity) - U. B. Paramanik, D. Das, R. Prasad, and Z. Hossain,
*Reentrant Superconductivity in Ir-doped Eu(Fe1-xIrx)2As2*, arXiv:1303.2855 (due to Eu spin ordering) - F. F. Tafti, A. Juneau-Fecteau, M.-E. Delage, S. Rene de Cotret,
J.-Ph. Reid, A. F. Wang, X.-G. Luo, X. H. Chen, N. Doiron-Leyraud, and L.
Taillefer,
*Change of pairing symmetry in the iron-based superconductor KFe2As2*, arXiv:1303.2961 (high-pressure experiment) - C. N. Veenstra, Z.-H. Zhu, M. Raichle, B. M. Ludbrook, A. Nicolaou,
B. Slomski, G. Landolt, S. Kittaka, Y. Maeno, J. H. Dil, I. S. Elfimov,
M. W. Haverkort, and A. Damascelli,
*Observation of strong spin-orbital entanglement in Sr2RuO4 by spin-resolved ARPES*, arXiv:1303.5444 - M. Wang, C. Zhang, X. Lu, G. Tan, H. Luo, Y. Song, M. Wang, X. Zhang, E.
A. Goremychkin, T. G. Perring, T. A. Maier, Z. Yin, K. Haule,
G. Kotliar, and P. Dai,
*A magnetic origin for high temperature superconductivity in iron pnictides*, arXiv:1303.7339 (neutron scattering) - T. Uchino
*et al.*,*Enhancement of the superconducting transition temperature of MgB2 by proximity effect of d0 ferromagnet*, arXiv:1304.4105 (suggest, based on magnetization measurements, that ferromagnetic transition is accompanied by [partial] superconducting transition in the 110K range) - G. Grissonnanche
*et al.*,*Direct measurement of the upper critical field in cuprate superconductors*, Nature Commun.**5**, 3280 (2014) (Y-123, Y-124, Tl_{2}Ba_{2}CuO_{6+x}, for Y-14 find two peaks in*H*_{c2}as function of doping, separated by a dip around 1/8) - Y. I. Joe
*et al.*,*Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe*, Nature Phys._{2}**10**, 421 (2014) - X. Shi, P. V. Lin, T. Sasagawa, V. Dobrosavljevic, and Dragana Popovic,
*Two-stage magnetic-field-tuned superconductor-insulator transition in underdoped La*, Nature Physics (2014), doi:10.1038/nphys2961 (magnetic-field-driven two-step quantum phase transition)_{2-x}Sr_{x}CuO_{4} - S. E. Sebastian, N. Harrison, F. F. Balakirev, M. M. Altarawneh, P. A.
Goddard, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich,
*Normal-state nodal electronic structure in underdoped high-Tc copper oxides*, Nature**511**, 61 (2014) (quantum-oscillation experiments on underdoped YBCO in strong magnetic fields; report small electron pockets close to would-be nodal points) - Z. Xu, C. Stock, S. Chi, A. I. Kolesnikov, G. Xu, G. Gu, and J. M.
Tranquada,
*Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4*, Phys. Rev. Lett.**113**, 177002 (2014) - J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M.
Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee,
and Z.-X. Shen,
*Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3*, Nature**515**, 245 (2014) (ARPES showing shadow bands from coupling to substrate phonons, also modeling), see also News & Views: J. Zaanen,*High-temperature superconductivity: Electron mirages in an iron salt*, Nature**515**, 205 (2014) - J.-F. Ge
*et al.*,*Superconductivity above 100 K in single-layer FeSe films on doped SrTiO*, Nature Mat. (2014), doi:10.1038/nmat4153 (four-probe resistance measurements)_{3} - H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, K. Miyagawa, K.
Kanoda, and V. F. Mitrovic,
*Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)*, Nature Phys._{2}Cu(NCS)_{2}**10**, 928 (2014) - T. Yamashita, Y. Shimoyama, Y. Haga, T. D. Matsuda, E. Yamamoto, Y.
Onuki, H. Sumiyoshi, S. Fujimoto, A. Levchenko, T. Shibauchi, and Y. Matsuda,
*Colossal thermomagnetic response in the exotic superconductor URu2Si2*, Nature Phys.**11**, 17 (2015) (Nernst coefficient is enhanced by 10^{6}compared to expectation based on Gaussian fluctuations; related to breaking of time-reversal invariance?) - B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, J. Day, B. Tam, Z. Zhu,
J. B. Betts, R. Liang, D. A. Bonn, W. N. Hardy, and N. Harrison,
*A quantum critical point at the heart of high temperature superconductivity*, arXiv:1409.3990 (quantum-oscillation [mass-enhancement] and some resistivity measurements in magnetic fields up to 90 T, indicating the existence of two QCPs below the superconducting dome in doped YBCO) - A. P. Drozdov, M. I. Eremets, and I. A. Troyan,
*Conventional superconductivity at 190 K at high pressures*, arXiv:412.0460 (transport in diamond anvil cell, also in magnetic field, also observe isotope effect; superconductivity might involve an unknown hydride of sulfur produced at hight pressures out of H_{2}S), see also commentary at Journal Club for Condensed Matter Physics; A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin,*Conventional superconductivity at 203 K at high pressures*, arXiv:1506.08190 and Nature (2015), doi:10.1038/nature14964 (isotope effect points to a phononic, conventional, mechanism of superconductivity; suggest that superconductivity emerges in H_{3}S) - A. E. Böhmer, F. Hardy, L. Wang, T. Wolf, P. Schweiss, and C.
Meingast,
*Superconductivity-induced reentrance of orthorhombic distortion in (Ba,K)Fe2As2*, arXiv:1412.7038 (thermodynamic measurements, find tetragonal magnetic phase in an intermediate doping range; compare theory in arXiv:1412.7079) - A. Pogrebna, T. Mertelj, N. Vujicic, G. Cao, Z. A. Xu, and D. Mihailovic,
*Coexistence of ferromagnetism and superconductivity in iron based pnictides: a time resolved magnetooptical study*, Sci. Rep.**5**, 7754 (2015) (EuFe_{2}(As,P)_{2}, ferromagnetism of Eu f-moments) - J.-G. Cheng, K. Matsubayashi, W. Wu, J. P. Sun, F. K. Lin, J. L. Luo, and
Y. Uwatoko,
*Pressure Induced Superconductivity on the border of Magnetic Order in MnP*, Phys. Rev. Lett.**114**, 117001 (2015) (the magnetic order is helical) - S. Benhabib, A. Sacuto, M. Civelli, I. Paul, M. Cazayous, Y. Gallais,
M.-A. M&ecaute;asson, R. D. Zhong, J. Schneeloch, G. D. Gu, D. Colson, and A.
Forget,
*Collapse of the Normal-State Pseudogap at a Lifshitz Transition in the Bi2Sr2CaCu2O8+δ Cuprate Superconductor*, Phys. Rev. Lett.**114**, 147001 (2015) (strongly overdoped Bi-2212, normal-state pseudogap vanishes at a Lifshitz transition, where the superconducting transition temperature is smooth) - S.-L. Yang, J. A. Sobota, D. Leuenberger, Y. He, M. Hashimoto, D. H. Lu,
H. Eisaki, P. S. Kirchmann, and Z.-X. Shen,
*Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor*, Phys. Rev. Lett.**114**, 247001 (2015) (optimally doped Bi-2212; discussion of why the single-particle lifetime and the lifetime of an excited population of electrons are different) - G. Prando, T. Hartmann, W. Schottenhamel, Z. Guguchia, S. Sanna, F. Ahn,
I. Nekrasov, C. G. F. Blum, A. U. B. Wolter, S. Wurmehl, R. Khasanov, I.
Eremin, and B. Büchner,
*Mutual Independence of Critical Temperature and Superfluid Density under Pressure in Optimally Electron-Doped Superconducting LaFeAsO1-xFx*, Phys. Rev. Lett.**114**, 247004 (2015) (so, no Uemura scaling) - J-X. Yin
*et al.*,*Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)*, Nature Phys.**11**, 543 (2015) (STM experiments, broad zero-energy bound states at iron interstitials; such states are not observed in FeSe, suggesting that the stronger spin-orbit coupling of Te is crucial) - H. Takahashi
*et al.*,*Pressure-induced superconductivity in the iron-based ladder material BaFe2S3*, Nature Mat. (2015), doi:10.1038/nmat4351 (is an antiferromagnetic Mott insulator at ambient pressure) - Q. Wang
*et al.*,*Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe*, Nature Mat. (2015), doi:10.1038/nmat4492 (neutron scattering) - J. A. T. Barker, D. Singh, A. Thamizhavel, A. D. Hillier, M. R. Lees, G.
Balakrishnan, D. McK. Paul, and R. P. Singh,
*Unconventional Superconductivity in La7Ir3 Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry*, Phys. Rev. Lett.**115**, 267001 (2015) - B. Ludbrook
*et al.*,*Evidence for superconductivity in Li-decorated monolayer graphene*, PNAS**112**, 11795 (2015) - O. Pavlosiuk, D. Kaczorowski, X. Fabreges, A. Gukasov, and P. Wisniewski,
*Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi*, Sci. Rep.**6**, 18797 (2016) (*T*= 1.9 K,_{N}*T*= 0.7 K from resistivity and ac susceptibility, onset of superconductivity is neither seen in specific heat nor in dc susceptibility; authors suggest surface supercondunctivity, perhaps of topological surface states, as a possible explanation)_{c} - A. Charnukha, K. W. Post, S. Thirupathaiah, D. Pröpper, S. Wurmehl,
M. Roslova, I. Morozov, B. Büchner, A. N. Yaresko, A. V. Boris, S. V.
Borisenko, and D. N. Basov,
*Weak-coupling superconductivity in a strongly correlated iron pnictide*, Sci. Rep.**6**, 18620 (2016) (NaFeAs with some Co substitution; optical spectroscopy, ARPES, DFT, and Eliashberg theory; find strong, orbital-dependent correlations, but mass enhancement is unexpectedly small near the Gamma point, which the authors attribute to strong spin-orbit coupling acting against correlations, this allows a weak-coupling description of superconductivity with spin fluctuations as glue) - Y. Saito
*et al.*,*Superconductivity protected by spin-valley locking in ion-gated MoS2*, Nature Phys.**12**, 144 (2016) (huge critical field, importance of strong spin-orbit coupling and lack of inversion symmetry); X. Xi*et al.*,*Ising pairing in superconducting NbSe2 atomic layers*, Nature Phys.**12**, 139 (2016) (huge in-plane critical field, importance of spin-orbit coupling and lack of inversion symmetry) - T. Jacobs, Y. Simsek, Y. Koval, P. Müller, and V. M. Krasnov,
*Sequence of Quantum Phase Transitions in Bi2Sr2CaCu2O8+δ Cuprates Revealed by In Situ Electrical Doping of One and the Same Sample*, Phys. Rev. Lett.**116**, 067001 (2016) (in-situ doping by current injection [nonequilibrium!] allows to tune the doping over a broad interval) - A. J. Achkar, F. He, R. Sutarto, C. McMahon, M. Zwiebler, M.
Hücker, G. D. Gu, R. Liang, D. A. Bonn, W. N. Hardy, J. Geck,
and D. G. Hawthorn,
*Orbital symmetry of charge-density-wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67*, Nature Mat. (2016), doi:10.1038/nmat4568 (resonant soft X-ray scattering; find different symmetry of SDW in these compounds) - S. V. Borisenko, D. V. Evtushinsky, Z.-H. Liu, I. Morozov,
R. Kappenberger, S. Wurmehl, B. Büchner, A. N. Yaresko, T. K. Kim,
M. Hoesch, T. Wolf, and N. D. Zhigadlo,
*Direct observation of spin-orbit coupling in iron-based superconductors*, Nature Phys.**12**, 311 (2016) (ARPES) - S. Badoux
*et al.*,*Change of carrier density at the pseudogap critical point of a cuprate superconductor*, Nature**531**, 210 (2016) (YBCO, Hall effect at high magnetic field of up to 88 T) - C.-L. Song, H.-M. Zhang, Y. Zhong, X.-P. Hu, S.-H. Ji,
L. Wang, K. He, X.-C. Ma, and Q.-K. Xue,
*Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films*, Phys. Rev. Lett.**116**, 157001 (2016) (two separate superconducting domes as a function of doping; see also Physics viewpoint) - J. M. Allred, K. M. Taddei, D. E. Bugaris, M. J. Krogstad, S. H.
Lapidus, D. Y. Chung, H. Claus, M. G. Kanatzidis, D. E. Brown, J. Kang,
R. M. Fernandes, I. Eremin, S. Rosenkranz, O. Chmaissem, and R. Osborn,
*Double-Q spin-density wave in iron arsenide superconductors*, Nature Phys.**12**, 493 (2016) (Sr_{1-x}Na_{x}Fe_{2}As_{2}(*x*= 0.37), tetragonal magnetic phase, Mössbauer spectroscopy) - E. C. Gingrich
*et al.*,*Controllable 0-π Josephson junctions containing a ferromagnetic spin valve*, Nature Phys.**12**, 564 (2016 - Y. Li, Z. Yin, X. Wang, D. W. Tam, D. L. Abernathy, A. Podlesnyak, C.
Zhang, M. Wang, L. Xing, C. Jin, K. Haule, G. Kotliar, T. A. Maier, and P.
Dai,
*Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe1-xCoxAs*, Phys. Rev. Lett.**116**, 247001 (2016) (neutron scattering and DFT/DMFT calculations) - H. Ding
*et al.*,*High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO2(001)*, Phys. Rev. Lett.**117**, 067001 (2016) (STM) - P. Bourgeois-Hope, S. Chi, D. A. Bonn, R. Liang, W. N. Hardy, T. Wolf, C.
Meingast, N. Doiron-Leyraud, and L. Taillefer,
*Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character*, Phys. Rev. Lett.**117**, 097003 (2016) - X. Xi, H. Berger, L. Forró, J. Shan, and K. F. Mak,
*Gate Tuning of Electronic Phase Transitions in Two-Dimensional NbSe2*, Phys. Rev. Lett.**117**, 106801 (2016) (coexisting CDW and superconductivity in monolayer material, tuned by ionic liquid gate) - Y. Zhang, J. J. Lee, R. G. Moore, W. Li, M. Yi, M. Hashimoto, D. H. Lu, T.
P. Devereaux, D.-H. Lee, and Z.-X. Shen,
*Superconducting Gap Anisotropy in Monolayer FeSe Thin Film*, Phys. Rev. Lett.**117**, 117001 (2016) - H. C. Xu
*et al.*,*Highly Anisotropic and Twofold Symmetric Superconducting Gap in Nematically Ordered FeSe0.93S0.07*, Phys. Rev. Lett.**117**, 157003 (2016) (ARPES; nematically but not magnetically ordered, as usual for 11 family) - E. Hassinger, P. Bourgeois-Hope, H. Taniguchi, S. R. de Cotret, G.
Grissonnanche, M. S. Anwar, Y. Maeno, N. Doiron-Leyraud, and L. Taillefer,
*Vertical line nodes in the superconducting gap structure of Sr2RuO4*, arXiv:1606.04936 (thermal conductivity, also in magnetic field)

- S. Ami and K. Maki,
*Fluctuation-induced electric conductivity in dirty type-II superconductors*, Phys. Rev. B**18**, 4714 (1978) - J. R. Schrieffer, X. G. Wen, and S. C. Zhang,
*Dynamic spin fluctuations and the bag mechanism of high-Tc superconductivity*, Phys. Rev. B**39**, 11663 (1989) (explanation of the spin-bag picture of high-temperature superconductivity, derivation of RPA pairing interaction in SDW phase) - S. Haas, A. V. Balatsky, M. Sigrist, and T. M. Rice,
*Extended gapless regions in disordered dx2-y2 wave superconductors*, Phys. Rev. B**56**, 5108 (1997) (Abrikosov-Gorkov theory, momentum-dependent scattering off nonmagnetic impurities leads to extended ungapped regions on the Fermi surface, close to the gap nodes of the clean system) - C. Noce and M. Cuoco,
*Energy bands and Fermi surface of Sr*, Phys. Rev. B_{2}RuO_{4}**59**, 2659 (1999) (among other things clarifies the relation between extended Hückel and tight-binding theory) - E. Babaev and H. Kleinert,
*Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions*, Phys. Rev. B**59**, 12083 (1999) (stiffness obtained from BCS theory, then include phase fluctuations) - T. K. Ng,
*Duality picture between antiferromagnetism and d-wave superconductivity in t-J model at two dimensions*, cond-mat/9911099 (long paper) - M. R. Norman, M. Randeria, B. Janko, and J. C. Campuzano,
*Photoemission and the Origin of High Temperature Superconductivity*, cond-mat/0003406, Physica C**341-348**, 2063 (2000) (a few insightful remarks) - T. Senthil and M. P. A. Fisher,
*Fractionalization and confinement in the U(1) and Z*, cond-mat/0006500_{2}gauge theories of strongly correlated systems - A. Foussats, A. Greco, C. Repetto, O. P. Zandron, and O. S. Zandron,
*Connection between the Slave-Particles and X-Operators Path-Integral Representations. A New Perturbative Approach*, cond-mat/0007018, J. Physics A - J. Dukelsky, C. Esebbag, and P. Schuck,
*Class of Exactly Solvable Pairing Models*, Phys. Rev. Lett.**87**, 066403 (2001) (extend Richardson's exact solution) - M. Franz, Z. Tesanovic, and O. Vafek,
*QED*, Phys. Rev. B_{3}theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via an algebraic Fermi liquid**66**, 054535 (2002) (includes detailed derivation of QED_{3}theory, long paper) - I. F. Herbut,
*QED*, Phys. Rev. B_{3}theory of underdoped high-temperature superconductors**66**, 094504 (2002) - J. E. Han,
*Spin-triplet s-wave local pairing induced by Hund's rule coupling*, Phys. Rev. B**70**, 054513 (2004) (apart from the idea that Hund's first rule can induce local triplet pairing, this is interesting since the antisymmetry of the pairing state resides in its*orbital*part) - Z. B. Huang, W. Hanke, and E. Arrigoni,
*Role of vertex corrections in the spin-fluctuation mediated pairing mechanism*, cond-mat/0408564, Europhys. Lett. (to be published) - C. Iniotakis, S. Graser, T. Dahm, and N. Schopohl,
*Local density of states at polygonal boundaries of d-wave superconductors*, Phys. Rev. B**71**, 214508 (2005) (continuum description [no lattice] using the Eilenberger-Ricatti approach) - T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B.
White,
*Systematic Study of d-Wave Superconductivity in the 2D Repulsive Hubbard Model*, Phys. Rev. Lett.**95**, 237001 (2005) (finite-size effects in dynamical cluster approximation with QMC as cluster solver) - C. M. Varma,
*A Theory of the Pseudogap State of the Cuprates*, cond-mat/0507214 - A. V. Chubukov and J. Schmalian,
*Strong coupling superconductivity due to massless boson exchange*, cond-mat/0507562 (including discussion of phase fluctuations) - K. Aryanpour, E. R. Dagotto, M. Mayr, T. Paiva, W. E. Pickett, and
R. T. Scalettar,
*Enhancement of Superconducting Pairing by Inhomogeneity*, cond-mat/0507588 - M. Mayr, G. Alvarez, C. Sen, and E. Dagotto,
*Phase Fluctuations in Strongly Coupled d-Wave Superconductors*, cond-mat/0511023 - M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke,
*Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature*, cond-mat/0511460, Phys. Rev. B (variational quantum-cluster approach) - T. Eckl and W. Hanke,
*Precursor effects of the superconducting state caused by d-wave phase-fluctuations above T*, cond-mat/0511541_{c} - P. W. Anderson,
*The "Strange Metal" is a Projected Fermi Liquid with Edge Singularities*, cond-mat/0512471 - M. Kircan and M. Vojta,
*Magnetic order in lightly doped cuprates: Coherent vs. incoherent hole quasiparticles and non-magnetic impurities*, Phys. Rev. B**73**, 014516 (2006) - W.-F. Tsai and S. A. Kivelson,
*Superconductivity in Inhomogeneous Hubbard Models*, cond-mat/0601113 - V. Barzykin and D. Pines,
*Protected behavior in the Cuprate superconductors*, cond-mat/0601396 (analysis of scaling of susceptibility data leads to two-component model for cuprates) - M. Capone and G. Kotliar,
*Competition between d-wave superconductivity and antiferromagnetism in the 2D Hubbard model*, cond-mat/0603227 (cellular DMFT) - K.-Y. Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee, T. Xiang, and
F. C. Zhang,
*Low Energy Physical Properties of High Tc Superconducting Cu-oxides - A Comparison Between Plain Vannila RVB Theory and Experiments*, cond-mat/0603423 - W. P. Su,
*Inhomogeneous D-Wave Superconductivity and Antiferromagnetism in a Two-Dimensional Extended Hubbard Model with Nearest-Neighbor Attractive Interaction*, cond-mat/0604400 (mean-field solution, with weak disorder potential) - D. J. Singh,
*On kinetic energy stabilized superconductivity in cuprates*, cond-mat/0607175 (lucid discussion of superconductivity in the*t-J*model due to reduction of kinetic energy and how this idea violates the virial theorem) - C. M. Varma and L. Zhu,
*The Shrinking "Fermi-Arc" in Cuprates*, cond-mat/0607777 (short paper) - D. C. Mattis,
*Stripes in Microscopic Theory of High-T*, cond-mat/0608277_{c}Superconductivity - P. W. Anderson,
*Do We Need (or Want) a Bosonic Glue to Pair Electrons in High T*, cond-mat/0609040 (short but illuminating discussion of why low-energy bosonic modes are not the important issue)_{c}Superconductors? - W. A. Atkinson,
*Superfluid Suppression in d-Wave Superconductors due to Disordered Magnetism*, cond-mat/0610041 (mean-field theory) - V. Aji and C. M. Varma,
*Theory of the Quantum Critical Fluctuations in Cuprates*, cond-mat/0610646 (critical properties related to time-reversal and inversion symmetry breaking order parameter postulated for the pseudogap regime of cuprates) - Y. Sun, M. Guidry, and C.-L. Wu,
*k-dependent SU(4) model of high-temperature superconductivity and its coherent-state solutions*, arXiv:0705.0818; M. Guidry, Y. Sun, and C.-L. Wu,*The Origin of Fermi Arcs in Underdoped High-Temperature Superconductors*, arXiv:0705.0822 - Z. Tesanovic,
*Emergence of Cooper pairs, d-wave duality and the phase diagram of cuprate superconductors*, arXiv:0705.3836 - S. Huefner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky,
*Two Gaps Make a High Temperature Superconductor*, arXiv:0706.4282 (extensive analysis of existing experimental data) - T. Aimi and M. Imada,
*Does Simple Two-Dimensional Hubbard Model Account for High-Tc Superconductivity in Copper Oxides?*, arXiv:0708.3416 (they say "no") - P. W. Anderson,
*Hidden Fermi Liquid: The Secret of High T*, arXiv:0709.0656_{c}Cuprates - J. Wu, P. Phillips, and A. H. Castro-Neto,
*Theory of the Magnetic Moment in Iron Pnictides*, Phys. Rev. Lett.**101**, 126401 (2008)**P** - A. V. Chubukov, D. Efremov, and I. Eremin,
*Magnetism, superconductivity, and pairing symmetry in iron-based superconductors*, Phys. Rev. B**78**, 134512 (2008)**P** - T. D. Stanescu, V. Galitski, and S. Das Sarma,
*Orbital fluctuation mechanism for superconductivity in iron-based compounds*, Phys. Rev. B**78**, 195114 (2008)**P** - M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E.
Dagotto,
*Model for the Magnetic Order and Pairing Channels in Fe Pnictide Superconductors*, Phys. Rev. Lett.**101**, 237004 (2008) - G. Alvarez and E. Dagotto,
*Fermi Arcs in the Superconducting Clustered State for Underdoped Cuprates*, arXiv:0802.3394 (Monte Carlo simulations, with disorder) - V. Cvetkovic and Z. Tesanovic,
*Multiband magnetism and superconductivity in Fe-based compounds*, arXiv:0804.4678, EPL**85**, 37002 (2009) - O. Dutta and A. Lebed,
*Cooper Pairs with Broken Time-Reversal, Parity, and Spin-Rotational Symmetries in Singlet Type-II Superconductors*, arXiv:0805.1749, Phys. Rev. Lett. (for a singlet superconductor, a triplet component appears in the order parameter above H_{c1}) - T. Morinari,
*Pseudogap and short-range antiferromagnetic correlation controlled Fermi surface in underdoped cuprates: From Fermi arc to electron pocket*, arXiv:0805.1977 - K. Seo, B. A. Bernevig, and J. Hu,
*Pairing Symmetry in a Two-Orbital Exchange Coupling Model of Oxypnictides*, arXiv:0805.2958**P** - P. Wachter,
*Cu, Pu and Fe high Tc superconductors: all the same mechanism!*, arXiv:0806.0900 - V. Barzykin and L. P. Gorkov,
*On superconducting and magnetic properties of iron-oxypnictides*, arXiv:0806.1933 - P. R. C. Kent, T. Saha-Dasgupta, O. Jepsen, O. K. Andersen, A.
Macridin, T. A. Maier, M. Jarrell, and T. C. Schulthess,
*Combined density-functional and dynamical cluster quantum Monte Carlo calculations for three-band Hubbard models for hole-doped cuprate superconductors*, arXiv:0806.3770 - D. Eichenberger and D. Baeriswyl,
*Superconductivity in the 2D Hubbard model: Electron doping is different*, arXiv:0808.0433 - A. Mitra,
*Dissipative and nonequilibrium effects near a superconductor-metal quantum critical point*, arXiv:0808.0942 (2D electron gas with attractive interaction, with tunneling to a normal-metallic substrate, which acts as a particle and energy bath; an electric field is applied parallel to the 2D layer; Keldysh formalism)**P** - G. A. Sawatzky, I. S. Elfimov, J. van den Brink, and J. Zaanen,
*Heavy anion solvation of polarity fluctuations in Pnictides*, arXiv:0808.1390**P** - O. P. Sushkov,
*Why phase diagrams of different underdoped cuprates are remarkably different? Disorder versus bilayer*, arXiv:0808.2094 (LSCO vs. YBCO) - V. Stanev, J. Kang, and Z. Tesanovic,
*Spin Fluctuation Dynamics and Multiband Superconductivity in Iron Pnictides*, arXiv:0809.0014 - Y. Senga and H. Kontani,
*Impurity Effects in Sign Reversing Fully-Gapped Superconductors: Analysis of FeAs Superconductors*, arXiv:0809.0374 (extended s-wave picture is found to account for the robustness against impurity doping) - Q. Han and Z. D. Wang,
*Impurity states in antiferromagnetic Iron Arsenides*, arXiv:0809.0795 - E. Berg, E. Fradkin, and S. A. Kivelson,
*The striped superconductor*, arXiv:0810.1564 - M. S. Laad, L. Craco, S. Leoni, and H. Rosner,
*Mottness underpins the anomalous optical response of Iron Pnictides*, arXiv:0810.1607 (LDA+DMFT, mostly for parent compounds with unbroken symmetry)**P** - H. Ikeda,
*Pseudogap and Superconductivity in Iron-Based Layered Superconductor studied by Fluctuation-Exchange Approximation*, arXiv:0810.1828 - G. S. Unrig, M. Holt, J. Oitmaa, O. P. Sushkov, and R. R. P. Singh,
*Self-consistent spin-wave theory for the magnetic excitations in pnictides*, arXiv:0810.3068 - M. Berciu, I. Elfimov, and G. A. Sawatzky,
*Electronic polarons and bipolarons in Fe-based superconductors: a pairing mechanism*, arXiv:0811.0214 - H. Aoki,
*Unconventional superconductivity originating from disconnected Fermi surfaces in the iron-based compound*, arXiv:0811.1656 (tight-binding model based on LDA band structure, finding the generally accepted Fermi surface, RPA calculation of spin susceptibility)**P** - F. Krüger, S. Kumar, J. Zaanen, and J. van den Brink,
*Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors*, arXiv:0811.4104 - S.-P. Kou, T. Li, and Z.-Y. Weng,
*Coupled Local Moments and Itinerant Electrons in Iron-Based Superconductors*, arXiv:0811.4111 (an alternative picture of the SDW phase based on the coexistence of local moments and itinerant carriers) - Z. Hao and A. V. Chubukov,
*Magnetic resonance in the cuprates - exciton, plasmon, or pi-mode*, arXiv:0812.2697 (show that the presence of a resonance peak in the spin susceptibility does not imply that the pairing interaction is magnetic in origin) - A. Hackl and M. Vojta,
*Pressure-induced magnetic transition and volume collapse in FeAs superconductors: An orbital-selective Mott scenario*, arXiv:0812.3394 - Y. Ran, F. Wang, H. Zhai, A. Vishwanath, and D.-H. Lee,
*Nodal spin density wave and band topology of the FeAs-based materials*,